Anderson JL, Morrow DA. Acute Myocardial Infarction. N Engl J Med. 2017;376:2053–64.
Article CAS PubMed Google Scholar
Thrane PG, Olesen KKW, Thim T, et al. 10-Year Mortality After ST-Segment Elevation Myocardial Infarction Compared to the General Population. J Am Coll Cardiol. 2024;83:2615–25.
Steg PhG, James SK, Atar D, et al. ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J. 2012;33:2569–619.
Article CAS PubMed Google Scholar
Byrne RA, Rossello X, Coughlan JJ, et al. 2023 ESC Guidelines for the management of acute coronary syndromes. Eur Heart J. 2023;44:3720–826.
Article CAS PubMed Google Scholar
Gissler MC, Antiochos P, Ge Y, et al. Cardiac Magnetic Resonance Evaluation of LV Remodeling Post-Myocardial Infarction. JACC Cardiovasc Imaging. 2024;17:1366–80.
Rajakulasingam R, Ferreira PF, Scott AD, et al. Characterization of dynamic changes in cardiac microstructure after reperfused ST-elevation myocardial infarction by biphasic diffusion tensor cardiovascular magnetic resonance. Eur Heart J. Epub ahead of print 15 October 2024. https://doi.org/10.1093/eurheartj/ehae667.
Hamosh P, Cohn JN. Left ventricular function in acute myocardial infarction. J Clin Investig. 1971;50:523–33.
Article CAS PubMed PubMed Central Google Scholar
McCans JL, Parker JO. Left Ventricular Pressure-Volume Relationships During Myocardial Ischemia in Man. Circulation. 1973;48:775–85.
Article CAS PubMed Google Scholar
Sheehan FH, Doerr R, Schmidt WG, et al. Early recovery of left ventricular function after thrombolytic therapy for acute myocardial infarction: An important determinant of survival. J Am Coll Cardiol. 1988;12:289–300.
Article CAS PubMed Google Scholar
Simoons ML, Serruys PW, van den Brand M, et al. Early thrombolysis in acute myocardial infarction: Limitation of infarct size and improved survival. J Am Coll Cardiol. 1986;7:717–28.
Article CAS PubMed Google Scholar
Pfeffer MA, Pfeffer JM, Fishbein MC, et al. Myocardial infarct size and ventricular function in rats. Circ Res. 1979;44:503–12.
Article CAS PubMed Google Scholar
Pfeffer JM, Pfeffer MA, Fletcher PJ, et al. Progressive ventricular remodeling in rat with myocardial infarction. Am J Physiol Heart Circ Physiol. 1991;260:H1406–14.
Sunagawa K, Maughan WL, Sagawa K. Effect of regional ischemia on the left ventricular end-systolic pressure-volume relationship of isolated canine hearts. Circ Res. 1983;52:170–8.
Article CAS PubMed Google Scholar
Shioura KM, Geenen DL, Goldspink PH. Assessment of cardiac function with the pressure-volume conductance system following myocardial infarction in mice. Am J Physiol Heart Circ Physiol. 2007;293:H2870–7.
Article CAS PubMed Google Scholar
Paterek A, Kępska M, Kołodziejczyk J, et al. Post-myocardial infarction left ventricular remodelling and function in the rat: analysis using the pressure-volume loops. Prog Med. 2016;12:15–21.
Petrosillo G, Di Venosa N, Ruggiero FM, et al. Mitochondrial dysfunction associated with cardiac ischemia/reperfusion can be attenuated by oxygen tension control Role of oxygen-free radicals and cardiolipin. Biochim Biophys Acta - Bioenerg. 2005;1710:78–86.
Ide T, Tsutsui H, Hayashidani S, et al. Mitochondrial DNA Damage and Dysfunction Associated With Oxidative Stress in Failing Hearts After Myocardial Infarction. Circ Res. 2001;88:529–35.
Article CAS PubMed Google Scholar
Hørsdal OK, Moeslund N, Berg-Hansen K, et al. Lactate infusion elevates cardiac output through increased heart rate and decreased vascular resistance: a randomised, blinded, crossover trial in a healthy porcine model. J Transl Med. 2024;22:285.
Article PubMed PubMed Central Google Scholar
Hørsdal OK, Wethelund KL, Gopalasingam N, et al. Cardiovascular Effects of Increasing Positive End-Expiratory Pressure in A Model of Left Ventricular Cardiogenic Shock in Female Pigs. Anesthesiology. Epub ahead of print 26 August 2024. https://doi.org/10.1097/ALN.0000000000005201.
Hørsdal OK, Ellegaard MS, Larsen AM, et al. Lactate infusion improves cardiac function in a porcine model of ischemic cardiogenic shock. Crit Care. 2025;29:113.
Article PubMed PubMed Central Google Scholar
Hørsdal OK, Larsen AM, Wethelund KL, et al. The ketone body 3-hydroxybutyrate increases cardiac output and cardiac contractility in a porcine model of cardiogenic shock: a randomized, blinded, crossover trial. Basic Res Cardiol. Epub ahead of print 12 April 2025. https://doi.org/10.1007/s00395-025-01103-2.
Burkhoff D, Mirsky I, Suga H. Assessment of systolic and diastolic ventricular properties via pressure-volume analysis: a guide for clinical, translational, and basic researchers. Am J Physiol Heart Circ Physiol. 2005;289:H501–12.
Article CAS PubMed Google Scholar
Sagawa K. The end-systolic pressure-volume relation of the ventricle: definition, modifications and clinical use. Circulation. 1981;63:1223–7.
Article CAS PubMed Google Scholar
Senzaki H, Chen CH, Kass DA. Single-beat estimation of end-systolic pressure-volume relation in humans. A new method with the potential for noninvasive application. Circulation. 1996;94:2497–506.
Article CAS PubMed Google Scholar
Suga H, Sagawa K. Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle. Circ Res. 1974;35:117–26.
Article CAS PubMed Google Scholar
Burkhoff D, Sagawa K. Ventricular efficiency predicted by an analytical model. Am J Physiol. 1986;250:R1021–7.
Curran J, Burkhoff D, Kloner RA. Beyond Reperfusion: Acute Ventricular Unloading and Cardioprotection During Myocardial Infarction. J Cardiovasc Transl Res. 2019;12:95–106.
Article PubMed PubMed Central Google Scholar
Suga H. Total mechanical energy of a ventricle model and cardiac oxygen consumption. Am J Physiol. 1979;236:H498-505.
Westerhof N. Cardiac work and efficiency. Cardiovasc Res. 2000;48:4–7.
Article CAS PubMed Google Scholar
Møller-Helgestad OK, Ravn HB, Møller JE. Large Porcine Model of Profound Acute Ischemic Cardiogenic Shock. Methods Mol Biol. 2018;1816:343–52.
Hørsdal OK, Gopalasingam N, Berg-Hansen K, et al. The Venous-to-Arterial Carbon Dioxide Difference is an Indicator of Cardiac Index in Cardiogenic Shock Complicating Myocardial Infarction—A Porcine Study. Heart Lung Circ. Epub ahead of print March 2025. https://doi.org/10.1016/j.hlc.2024.12.012.
Meng X-M, Yuan J-H, Zhou Z-F, et al. Evaluation of time-dependent phenotypes of myocardial ischemia-reperfusion in mice. Aging. 2023;15:10627–39.
Article CAS PubMed PubMed Central Google Scholar
Remme WJ. The sympathetic nervous system and ischaemic heart disease. Eur Heart J. 1998;19:F62-71.
Schomig A, Haass M, Richardt G. Catecholamine release and arrhythmias in acute myocardial ischaemia. Eur Heart J. 1991;12:38–47.
Hansen KB, Sörensen J, Hansson NH, et al. Myocardial efficiency in patients with different aetiologies and stages of heart failure. Eur Heart J Cardiovasc Imaging. 2022;23:328–37.
van Diepen S, Katz JN, Albert NM, et al. Contemporary Management of Cardiogenic Shock: A Scientific Statement From the American Heart Association. Circulation; 136. Epub ahead of print 17 October 2017. https://doi.org/10.1161/CIR.0000000000000525.
Auffret V, Cottin Y, Leurent G, et al. Predicting the development of in-hospital cardiogenic shock in patients with ST-segment elevation myocardial infarction treated by primary percutaneous coronary intervention: the ORBI risk score. Eur Heart J. 2018;39:2090–102.
Comments (0)