Mastoor Y, Murphy E, Roman B. Mechanisms of postischemic cardiac death and protection following myocardial injury. J Clin Investig. 2025;135(1):e184134. https://doi.org/10.1172/JCI184134.
Article CAS PubMed PubMed Central Google Scholar
Heusch G. Myocardial ischemia/reperfusion: Translational pathophysiology of ischemic heart disease. Med. 2024;5(1):10–31. https://doi.org/10.1016/j.medj.2023.12.007.
Article CAS PubMed Google Scholar
Nakada Y, Canseco DC, Thet S, Abdisalaam S, Asaithamby A, Santos CX … Sadek HA. Hypoxia induces heart regeneration in adult mice. Nature. 2017;541(7636), 222–227. https://doi.org/10.1038/nature20173.
Li Y, Feng J, Song S, Li H, Yang H, Zhou B, … Nie Y. gp130 controls cardiomyocyte proliferation and heart regeneration. Circulation. 2020;142(10):967–982. https://doi.org/10.1161/CIRCULATIONAHA.119.044484.
Yue Z, Chen J, Lian H, Pei J, Li Y, Chen X … Nie Y. PDGFR-β Signaling Regulates Cardiomyocyte Proliferation and Myocardial Regeneration. Cell Reports. 2019;28(4), 966–978.e4. https://doi.org/10.1016/j.celrep.2019.06.065
Das S, Goldstone AB, Wang H, Farry J, D’Amato G, Paulsen MJ … Red-Horse K. A Unique Collateral Artery Development Program Promotes Neonatal Heart Regeneration. Cell. 2019;176(5), 1128–1142.e18. https://doi.org/10.1016/j.cell.2018.12.023
Liu FY, Fan D, Yang Z, Tang N, Guo Z, Ma SQ … Tang QZ. TLR9 is essential for HMGB1-mediated post-myocardial infarction tissue repair through affecting apoptosis, cardiac healing, and angiogenesis. Cell Death Dis. 2019;10(7), 480. https://doi.org/10.1038/s41419-019-1718-7
Eming SA, Martin P, Tomic-Canic M. Wound repair and regeneration: mechanisms, signaling, and translation. Science Translational Medicine. 2014;6(265):265sr6. https://doi.org/10.1126/scitranslmed.3009337.
Article CAS PubMed PubMed Central Google Scholar
Ye L, Zimmermann WH, Garry DJ, Zhang J. Patching the Heart: Cardiac Repair From Within and Outside. Circ Res. 2013;113(7):922–32. https://doi.org/10.1161/CIRCRESAHA.113.300216.
Article CAS PubMed Google Scholar
Malektaj H, Nour S, Imani R, Siadati MH. Angiogenesis induction as a key step in cardiac tissue Regeneration: From angiogenic agents to biomaterials. Int J Pharm. 2023;643:123233. https://doi.org/10.1016/j.ijpharm.2023.123233.
Article CAS PubMed Google Scholar
Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, Sadek HA. Transient regenerative potential of the neonatal mouse heart. Science. 2011;331(6020):1078–80. https://doi.org/10.1126/science.1200708.
Article CAS PubMed PubMed Central Google Scholar
Huang C, Ding T, Zhang Y, Li X, Sun X, Lv S, … Nie Y. The longevity protein p66Shc is required for neonatal heart regeneration. J Mol Cell Cardiol. 2023;177:21–27. https://doi.org/10.1016/j.yjmcc.2023.02.004.
Feng J, Li Y, Li Y, Yin Q, Li H, Li J, … Nie Y. Versican Promotes Cardiomyocyte Proliferation and Cardiac Repair. Circulation. 2024;149(13), 1004–1015. https://doi.org/10.1161/CIRCULATIONAHA.123.066298.
D’Amato G, Phansalkar R, Naftaly JA, Fan X, Amir ZA, Rios Coronado PE, … Red-Horse K. Endocardium-to-coronary artery differentiation during heart development and regeneration involves sequential roles of Bmp2 and Cxcl12/Cxcr4. Dev Cell. 2022;57(22), 2517–2532.e6. https://doi.org/10.1016/j.devcel.2022.10.007.
Ferraro B, Leoni G, Hinkel R, Ormanns S, Paulin N, Ortega-Gomez A, … Soehnlein O. Pro-Angiogenic Macrophage Phenotype to Promote Myocardial Repair. J Am Coll Cardiol. 2019;73(23), 2990–3002. https://doi.org/10.1016/j.jacc.2019.03.503.
Aurora AB, Porrello ER, Tan W, Mahmoud AI, Hill JA, Bassel-Duby R, … Olson EN. Macrophages are required for neonatal heart regeneration. J Clin Invest. 2014;124(3), 1382–1392. https://doi.org/10.1172/JCI72181.
Korf-Klingebiel M, Reboll MR, Klede S, Brod T, Pich A, Polten F, … Wollert KC. Myeloid-derived growth factor (C19orf10) mediates cardiac repair following myocardial infarction. Nat Med. 2015;21(2), 140–149. https://doi.org/10.1038/nm.3778.
Bortnov V, Annis DS, Fogerty FJ, Barretto KT, Turton KB, Mosher DF. Myeloid-derived growth factor is a resident endoplasmic reticulum protein. J Biol Chem. 2018;293(34):13166–75. https://doi.org/10.1074/jbc.AC118.002052.
Article CAS PubMed PubMed Central Google Scholar
Ebenhoch R, Akhdar A, Reboll MR, Korf-Klingebiel M, Gupta P, Armstrong J, … Nar H. Crystal structure and receptor-interacting residues of MYDGF — a protein mediating ischemic tissue repair. Nat Commun. 2019;10(1), 5379. https://doi.org/10.1038/s41467-019-13343-7
Meng B, Li Y, Ding Y, Xu X, Wang L, Guo B, … Xiang G. Myeloid-derived growth factor inhibits inflammation and alleviates endothelial injury and atherosclerosis in mice. Sci Adv. 2021;7(21), eabe6903. https://doi.org/10.1126/sciadv.abe6903
Nguyen T, Wei Y, Nakada Y, Chen JY, Zhou Y, Walcott G, Zhang J. Analysis of cardiac single-cell RNA-sequencing data can be improved by the use of artificial-intelligence-based tools. Sci Rep. 2023;13(1):6821. https://doi.org/10.1038/s41598-023-32293-1.
Article CAS PubMed PubMed Central Google Scholar
Korf-Klingebiel M, Reboll MR, Polten F, Weber N, Jäckle F, Wu X, … Wollert KC. Myeloid-Derived Growth Factor Protects Against Pressure Overload–Induced Heart Failure by Preserving Sarco/Endoplasmic Reticulum Ca2+ -ATPase Expression in Cardiomyocytes. Circulation. 2021;144(15), 1227–1240. https://doi.org/10.1161/CIRCULATIONAHA.120.053365
Farooq M, Khan AW, Kim MS, Choi S. The Role of Fibroblast Growth Factor (FGF) Signaling in Tissue Repair and Regeneration. Cells. 2021;10(11):3242. https://doi.org/10.3390/cells10113242.
Article CAS PubMed PubMed Central Google Scholar
Li G, Shao Y, Guo HC, Zhi Y, Qiao B, Ma K, … Li Y. MicroRNA-27b-3p down-regulates FGF1 and aggravates pathological cardiac remodelling. Cardiovasc Res. 2022;118(9), 2139–2151. https://doi.org/10.1093/cvr/cvab248
Shi J, Fan C, Zhuang Y, Sun J, Hou X, Chen B, … Dai J. Heparan sulfate proteoglycan promotes fibroblast growth factor-2 function for ischemic heart repair. Biomater Sci. 2019;7(12), 5438–5450. https://doi.org/10.1039/c9bm01336a
Huang Z, Tan Y, Gu J, Liu Y, Song L, Niu J, … Mohammadi M. Uncoupling the Mitogenic and Metabolic Functions of FGF1 by Tuning FGF1-FGF Receptor Dimer Stability. Cell Rep. 20(7), 1717–1728. https://doi.org/10.1016/j.celrep.2017.06.063
Nezzo M, Meloni M, Carini A, Carreri B, Nicita F, Garaci F, Morosetti D. Efficacy of retrograde revascularization in diabetic patients with chronic limb-threatening ischemia after a failed antegrade approach. Vascular. 2024;17085381241256022. https://doi.org/10.1177/17085381241256022
Kolossváry E, Bánsághi Z, Szabó GV, Járai Z, Farkas K. [Ischemic origin of diabetic foot disease. Epidemiology, difficulties of diagnosis, options for prevention and revascularization]. Orvosi Hetilap. 2017;158(6), 203–211. https://doi.org/10.1556/650.2017.30649
Li X, Jiang Z, Li J, Yang K, He J, Deng Q, … Jiang Z. PRELP inhibits colorectal cancer progression by suppressing epithelial-mesenchymal transition and angiogenesis via the inactivation of the FGF1/PI3K/AKT pathway. Apoptosis. 2025;30(1–2), 16–34. https://doi.org/10.1007/s10495-024-02015-7
Lampart A, Krowarsch D, Biadun M, Sorensen V, Szymczyk J, Sluzalska K, … Zakrzewska M. Intracellular FGF1 protects cells from apoptosis through direct interaction with p53. Cell Mol Life Sci. 2023;80(10), 311. https://doi.org/10.1007/s00018-023-04964-9
Sluzalska KD, Slawski J, Sochacka M, Lampart A, Otlewski J, Zakrzewska M. Intracellular partners of fibroblast growth factors 1 and 2 - implications for functions. Cytokine Growth Factor Rev. 2021;57:93–111. https://doi.org/10.1016/j.cytogfr.2020.05.004.
Article CAS PubMed Google Scholar
Li G, Li Z, Shen J, Ma X, Zheng S, Zheng Y, … Dong N. Identifying and validating angiogenesis-related genes remodeling tumor microenvironment and suppressing immunotherapy response in gastric cancer. Gene. 2024;928, 148796. https://doi.org/10.1016/j.gene.2024.148796
Li J, Chen H, Li X, Wang L, Gao A, Zhang P, … Sun Y. Co-expression of podoplanin and fibroblast growth factor 1 predicts poor prognosis in patients with lung squamous cell carcinoma. Mol Med Rep. 2017;16(2), 1643–1652. https://doi.org/10.3892/mmr.2017.6830
Deng X, Li X, Guo X, Lu Y, Xie Y, Huang X, … Wang C. Myeloid-derived suppressor cells promote tumor growth and sorafenib resistance by inducing FGF1 upregulation and fibrosis. Neoplasia. 2022;28, 100788. https://doi.org/10.1016/j.neo.2022.100788
Comments (0)