Small Interfering RNA (siRNA) for Cardiorenal Disease: Mechanistic Insights from Preclinical and Clinical Studies

Sullenger BA, Nair S. From the RNAworld to the clinic. Science. 2016;352(6292):1417–20. https://doi.org/10.1126/SCIENCE.AAD8709/SUPPL_FILE/AAD8709-SULLENGER-SM.PDF.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Musa DA, Raji MO, Sikiru AB, Aremu KH, Aigboeghian EA. Promising RNA-based therapies for viral infections, genetic disorders and cancer. Acad Mol Biol Genomics. 2024. https://doi.org/10.20935/ACADMOLBIOGEN7329/PDF.

Article  Google Scholar 

Levin AA. Targeting therapeutic oligonucleotides. N Engl J Med. 2017;376(1):86–8. https://doi.org/10.1056/NEJMCIBR1613559/SUPPL_FILE/NEJMCIBR1613559_DISCLOSURES.PDF.

Article  PubMed  Google Scholar 

Damase TR, Sukhovershin R, Boada C, Taraballi F, Pettigrew RI, Cooke JP. The limitless future of RNA therapeutics. Front Bioeng Biotechnol. 2021;9: 628137. https://doi.org/10.3389/FBIOE.2021.628137/XML/NLM.

Article  PubMed  PubMed Central  Google Scholar 

Dowdy SF, Levy M. RNA therapeutics (Almost) comes of age: targeting, delivery and endosomal escape. Nucleic Acid Ther. 2018;28(3):107–8. https://doi.org/10.1089/NAT.2018.29001.DOW.

Article  CAS  PubMed  Google Scholar 

Ali Zaidi SS, Fatima F, Ali Zaidi SA, Zhou D, Deng W, Liu S. Engineering siRNA therapeutics: challenges and strategies. J Nanobiotechnology. 2023;21(1):1–15. https://doi.org/10.1186/S12951-023-02147-Z/TABLES/2.

Article  Google Scholar 

León-Román J, Azancot MA, Marouco C, Patricio-Liebana M, Zamora JI, Ramos Terrades N, … Soler MJ. A new era in the management of cardiorenal syndrome: the importance of cardiorenal units. CardioRenal Med. 2025;15(1):174-183. https://doi.org/10.1159/000543294/4327825/000543294.PDF

Boudoulas KD, Triposkiadis F, Parissis J, Butler J, Boudoulas H. The cardio-renal Interrelationship. Prog Cardiovasc Dis. 2017;59(6):636–48. https://doi.org/10.1016/J.PCAD.2016.12.003.

Article  PubMed  Google Scholar 

Pandey KN. Molecular signaling mechanisms and function of natriuretic peptide receptor-a in the pathophysiology of cardiovascular homeostasis. Front Physiol. 2021;12: 693099. https://doi.org/10.3389/FPHYS.2021.693099/XML/NLM.

Article  PubMed  PubMed Central  Google Scholar 

Ranasinghe P, Addison ML, Webb DJ. Small Interfering RNA therapeutics in hypertension: a viewpoint on vasopressor and vasopressor-sparing strategies for counteracting blood pressure lowering by angiotensinogen-targeting small interfering RNA. J Am Heart Assoc. 2022;11(20):27694. https://doi.org/10.1161/JAHA.122.027694/ASSET/9DE5D3EC-65CA-40A3-80A7-BE3DAA14474C/ASSETS/GRAPHIC/JAH37883-FIG-0001.PNG.

Article  Google Scholar 

da Silva Menezes Junior A, Nogueira THM, de Lima KBA, de Oliveira HL, Botelho SM. Exploratory studies on RNAi-based therapies targeting angiotensinogen in hypertension: scoping review. J Personalized Med. 2024;15(1):3. https://doi.org/10.3390/JPM15010003.

Article  Google Scholar 

Addison ML, Ranasinghe P, Webb DJ. Novel pharmacological approaches in the treatment of hypertension: a focus on RNA-based therapeutics. Hypertension. 2023;80(11):2243–54. https://doi.org/10.1161/HYPERTENSIONAHA.122.19430/ASSET/1A476386-B846-40A5-9EF5-4387A520AA0B/ASSETS/GRAPHIC/HYPERTENSIONAHA.122.19430.FIG03.JPG.

Article  CAS  PubMed  Google Scholar 

Doi K, Matsuura R. Sympathetic nerve activation in acute kidney injury and cardiorenal syndrome. Nephron. 2023;147(12):717–20. https://doi.org/10.1159/000534217.

Article  CAS  PubMed  Google Scholar 

Tirapelli CR, Padovan JC. Oxidative stress in cardiorenal system. Antioxidants. 2024;13(9):1126. https://doi.org/10.3390/ANTIOX13091126.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Virzì GM, Clementi A, Brocca A, de Cal M, Ronco C. Epigenetics: a potential key mechanism involved in the pathogenesis of cardiorenal syndromes. J Nephrol. 2018;31(3):333–41. https://doi.org/10.1007/S40620-017-0425-7/METRICS.

Article  PubMed  Google Scholar 

Shanmugam MK, Sethi G. Role of epigenetics in inflammation-associated diseases. Subcell Biochem. 2013;61:627–57. https://doi.org/10.1007/978-94-007-4525-4_27.

Article  CAS  PubMed  Google Scholar 

van Assendelft OW, Zijlstra WG. Extinction coefficients for use in equations for the spectrophotometric analysis of haemoglobin mixtures. Anal Biochem. 1975;69(1):43–8. https://doi.org/10.1016/0003-2697(75)90563-1.

Article  PubMed  Google Scholar 

Koontz WA, Shiman R. Beef kidney 3 hydroxyanthranilic acid oxygenase. Purification, characterization, and analysis of the assay. J Biol Chem. 1976;251(2):368–77. https://doi.org/10.1016/s0021-9258(17)33888-7.

Article  CAS  PubMed  Google Scholar 

Su H, Zeng H, He X, Zhu SH, Chen JX. Histone acetyltransferase p300 inhibitor improves coronary flow reserve in sirt3 (Sirtuin 3) knockout mice. J Am Heart Assoc. 2020;9(18):17176. https://doi.org/10.1161/JAHA.120.017176/ASSET/52D07737-B5BE-4830-B419-378FC02346E8/ASSETS/GRAPHIC/JAH35489-FIG-0006.PNG.

Article  Google Scholar 

Lazar AG, Vlad ML, Manea A, Simionescu M, Manea SA. Activated histone acetyltransferase p300/CBP-related signalling pathways mediate up-regulation of NADPH oxidase, inflammation, and fibrosis in diabetic kidney. Antioxidants. 2021;10(9):1356. https://doi.org/10.3390/ANTIOX10091356/S1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Virzì GM, Breglia A, Brocca A, De Cal M, Bolin C, Vescovo G, Ronco C. Levels of proinflammatory cytokines, oxidative stress, and tissue damage markers in patients with acute heart failure with and without cardiorenal syndrome type 1. Cardiorenal Med. 2018;8(4):321–31. https://doi.org/10.1159/000492602.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Delgado-valero B, Cachofeiro V, Martínez-martínez E. Fibrosis, the bad actor in cardiorenal syndromes: mechanisms involved. Cells. 2021;10(7):1824. https://doi.org/10.3390/CELLS10071824.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen X, Yu C, Hou X, Li J, Li T, Qiu A, … Zhuang S. Histone deacetylase 6 inhibition mitigates renal fibrosis by suppressing TGF-b and EGFR signaling pathways in obstructive nephropathy. Am J Physiol-Ren Physiol. 2020;319(6):F1003–F1014. https://doi.org/10.1152/AJPRENAL.00261.2020/ASSET/IMAGES/LARGE/AJ-AFLU200034F010.JPEG

Aufhauser DD, Hernandez P, Concors SJ, O’Brien C, Wang Z, Murken DR, … Levine MH. HDAC2 targeting stabilizes the CoREST complex in renal tubular cells and protects against renal ischemia/reperfusion injury. Sci Rep. 2021;11(1):1-13. https://doi.org/10.1038/S41598-021-88242-3;SUBJMETA=154,1585,2144,309,4,4022,631,692;KWRD=ACUTE+KIDNEY+INJURY,DRUG+DISCOVERY+AND+DEVELOPMENT

Lu J, Qian S, Sun Z. Targeting histone deacetylase in cardiac diseases. Front Physiol. 2024;15:1405569. https://doi.org/10.3389/FPHYS.2024.1405569/BIBTEX.

Article  PubMed  PubMed Central  Google Scholar 

HDAC2 histone deacetylase 2 [Homo sapiens (human)] - Gene - NCBI. (n.d.). Retrieved May 31, 2025, from https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=DetailsSearch&Term=3066

HDAC6 histone deacetylase 6 [Homo sapiens (human)] - Gene - NCBI. (n.d.). Retrieved May 31, 2025, from https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=DetailsSearch&Term=10013

Kumar P, Brooks HL. Sex-specific epigenetic programming in renal fibrosis and inflammation. Am J Physiol-Ren Physiol. 2023;325(5):F578–94. https://doi.org/10.1152/AJPRENAL.00091.2023/ASSET/IMAGES/LARGE/AJPRENAL.00091.2023_F001.JPEG.

Article  CAS  Google Scholar 

Liu Z, Yang J, Du M, Xin W. Functioning and mechanisms of PTMs in renal diseases. Front Pharmacol. 2023;14:1238706. https://doi.org/10.3389/FPHAR.2023.1238706/XML/NLM.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yogasundaram H, Chappell MC, Braam B, Oudit GY. Cardiorenal syndrome and heart failure—challenges and opportunities. Can J Cardiol. 2019;35(9):1208–19. https://doi.org/10.1016/J.CJCA.2019.04.002.

Article  PubMed  Google Scholar 

Rondeaux J, Groussard D, Renet S, Tardif V, Dumesnil A, Chu A, … Fraineau S. Ezh2 emerges as an epigenetic checkpoint regulator during monocyte differentiation limiting cardiac dysfunction post-MI. Nat Commun. 2023;14(1):1-15. https://doi.org/10.1038/s41467-023-40186-0

Liu F, Chen J, Li Z, Meng X. Recent advances in epigenetics of age-related kidney diseases. Genes. 2022;13(5):796. https://doi.org/10.3390/GENES13050796.

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif