Sullenger BA, Nair S. From the RNAworld to the clinic. Science. 2016;352(6292):1417–20. https://doi.org/10.1126/SCIENCE.AAD8709/SUPPL_FILE/AAD8709-SULLENGER-SM.PDF.
Article CAS PubMed PubMed Central Google Scholar
Musa DA, Raji MO, Sikiru AB, Aremu KH, Aigboeghian EA. Promising RNA-based therapies for viral infections, genetic disorders and cancer. Acad Mol Biol Genomics. 2024. https://doi.org/10.20935/ACADMOLBIOGEN7329/PDF.
Levin AA. Targeting therapeutic oligonucleotides. N Engl J Med. 2017;376(1):86–8. https://doi.org/10.1056/NEJMCIBR1613559/SUPPL_FILE/NEJMCIBR1613559_DISCLOSURES.PDF.
Damase TR, Sukhovershin R, Boada C, Taraballi F, Pettigrew RI, Cooke JP. The limitless future of RNA therapeutics. Front Bioeng Biotechnol. 2021;9: 628137. https://doi.org/10.3389/FBIOE.2021.628137/XML/NLM.
Article PubMed PubMed Central Google Scholar
Dowdy SF, Levy M. RNA therapeutics (Almost) comes of age: targeting, delivery and endosomal escape. Nucleic Acid Ther. 2018;28(3):107–8. https://doi.org/10.1089/NAT.2018.29001.DOW.
Article CAS PubMed Google Scholar
Ali Zaidi SS, Fatima F, Ali Zaidi SA, Zhou D, Deng W, Liu S. Engineering siRNA therapeutics: challenges and strategies. J Nanobiotechnology. 2023;21(1):1–15. https://doi.org/10.1186/S12951-023-02147-Z/TABLES/2.
León-Román J, Azancot MA, Marouco C, Patricio-Liebana M, Zamora JI, Ramos Terrades N, … Soler MJ. A new era in the management of cardiorenal syndrome: the importance of cardiorenal units. CardioRenal Med. 2025;15(1):174-183. https://doi.org/10.1159/000543294/4327825/000543294.PDF
Boudoulas KD, Triposkiadis F, Parissis J, Butler J, Boudoulas H. The cardio-renal Interrelationship. Prog Cardiovasc Dis. 2017;59(6):636–48. https://doi.org/10.1016/J.PCAD.2016.12.003.
Pandey KN. Molecular signaling mechanisms and function of natriuretic peptide receptor-a in the pathophysiology of cardiovascular homeostasis. Front Physiol. 2021;12: 693099. https://doi.org/10.3389/FPHYS.2021.693099/XML/NLM.
Article PubMed PubMed Central Google Scholar
Ranasinghe P, Addison ML, Webb DJ. Small Interfering RNA therapeutics in hypertension: a viewpoint on vasopressor and vasopressor-sparing strategies for counteracting blood pressure lowering by angiotensinogen-targeting small interfering RNA. J Am Heart Assoc. 2022;11(20):27694. https://doi.org/10.1161/JAHA.122.027694/ASSET/9DE5D3EC-65CA-40A3-80A7-BE3DAA14474C/ASSETS/GRAPHIC/JAH37883-FIG-0001.PNG.
da Silva Menezes Junior A, Nogueira THM, de Lima KBA, de Oliveira HL, Botelho SM. Exploratory studies on RNAi-based therapies targeting angiotensinogen in hypertension: scoping review. J Personalized Med. 2024;15(1):3. https://doi.org/10.3390/JPM15010003.
Addison ML, Ranasinghe P, Webb DJ. Novel pharmacological approaches in the treatment of hypertension: a focus on RNA-based therapeutics. Hypertension. 2023;80(11):2243–54. https://doi.org/10.1161/HYPERTENSIONAHA.122.19430/ASSET/1A476386-B846-40A5-9EF5-4387A520AA0B/ASSETS/GRAPHIC/HYPERTENSIONAHA.122.19430.FIG03.JPG.
Article CAS PubMed Google Scholar
Doi K, Matsuura R. Sympathetic nerve activation in acute kidney injury and cardiorenal syndrome. Nephron. 2023;147(12):717–20. https://doi.org/10.1159/000534217.
Article CAS PubMed Google Scholar
Tirapelli CR, Padovan JC. Oxidative stress in cardiorenal system. Antioxidants. 2024;13(9):1126. https://doi.org/10.3390/ANTIOX13091126.
Article CAS PubMed PubMed Central Google Scholar
Virzì GM, Clementi A, Brocca A, de Cal M, Ronco C. Epigenetics: a potential key mechanism involved in the pathogenesis of cardiorenal syndromes. J Nephrol. 2018;31(3):333–41. https://doi.org/10.1007/S40620-017-0425-7/METRICS.
Shanmugam MK, Sethi G. Role of epigenetics in inflammation-associated diseases. Subcell Biochem. 2013;61:627–57. https://doi.org/10.1007/978-94-007-4525-4_27.
Article CAS PubMed Google Scholar
van Assendelft OW, Zijlstra WG. Extinction coefficients for use in equations for the spectrophotometric analysis of haemoglobin mixtures. Anal Biochem. 1975;69(1):43–8. https://doi.org/10.1016/0003-2697(75)90563-1.
Koontz WA, Shiman R. Beef kidney 3 hydroxyanthranilic acid oxygenase. Purification, characterization, and analysis of the assay. J Biol Chem. 1976;251(2):368–77. https://doi.org/10.1016/s0021-9258(17)33888-7.
Article CAS PubMed Google Scholar
Su H, Zeng H, He X, Zhu SH, Chen JX. Histone acetyltransferase p300 inhibitor improves coronary flow reserve in sirt3 (Sirtuin 3) knockout mice. J Am Heart Assoc. 2020;9(18):17176. https://doi.org/10.1161/JAHA.120.017176/ASSET/52D07737-B5BE-4830-B419-378FC02346E8/ASSETS/GRAPHIC/JAH35489-FIG-0006.PNG.
Lazar AG, Vlad ML, Manea A, Simionescu M, Manea SA. Activated histone acetyltransferase p300/CBP-related signalling pathways mediate up-regulation of NADPH oxidase, inflammation, and fibrosis in diabetic kidney. Antioxidants. 2021;10(9):1356. https://doi.org/10.3390/ANTIOX10091356/S1.
Article CAS PubMed PubMed Central Google Scholar
Virzì GM, Breglia A, Brocca A, De Cal M, Bolin C, Vescovo G, Ronco C. Levels of proinflammatory cytokines, oxidative stress, and tissue damage markers in patients with acute heart failure with and without cardiorenal syndrome type 1. Cardiorenal Med. 2018;8(4):321–31. https://doi.org/10.1159/000492602.
Article CAS PubMed PubMed Central Google Scholar
Delgado-valero B, Cachofeiro V, Martínez-martínez E. Fibrosis, the bad actor in cardiorenal syndromes: mechanisms involved. Cells. 2021;10(7):1824. https://doi.org/10.3390/CELLS10071824.
Article CAS PubMed PubMed Central Google Scholar
Chen X, Yu C, Hou X, Li J, Li T, Qiu A, … Zhuang S. Histone deacetylase 6 inhibition mitigates renal fibrosis by suppressing TGF-b and EGFR signaling pathways in obstructive nephropathy. Am J Physiol-Ren Physiol. 2020;319(6):F1003–F1014. https://doi.org/10.1152/AJPRENAL.00261.2020/ASSET/IMAGES/LARGE/AJ-AFLU200034F010.JPEG
Aufhauser DD, Hernandez P, Concors SJ, O’Brien C, Wang Z, Murken DR, … Levine MH. HDAC2 targeting stabilizes the CoREST complex in renal tubular cells and protects against renal ischemia/reperfusion injury. Sci Rep. 2021;11(1):1-13. https://doi.org/10.1038/S41598-021-88242-3;SUBJMETA=154,1585,2144,309,4,4022,631,692;KWRD=ACUTE+KIDNEY+INJURY,DRUG+DISCOVERY+AND+DEVELOPMENT
Lu J, Qian S, Sun Z. Targeting histone deacetylase in cardiac diseases. Front Physiol. 2024;15:1405569. https://doi.org/10.3389/FPHYS.2024.1405569/BIBTEX.
Article PubMed PubMed Central Google Scholar
HDAC2 histone deacetylase 2 [Homo sapiens (human)] - Gene - NCBI. (n.d.). Retrieved May 31, 2025, from https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=DetailsSearch&Term=3066
HDAC6 histone deacetylase 6 [Homo sapiens (human)] - Gene - NCBI. (n.d.). Retrieved May 31, 2025, from https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=DetailsSearch&Term=10013
Kumar P, Brooks HL. Sex-specific epigenetic programming in renal fibrosis and inflammation. Am J Physiol-Ren Physiol. 2023;325(5):F578–94. https://doi.org/10.1152/AJPRENAL.00091.2023/ASSET/IMAGES/LARGE/AJPRENAL.00091.2023_F001.JPEG.
Liu Z, Yang J, Du M, Xin W. Functioning and mechanisms of PTMs in renal diseases. Front Pharmacol. 2023;14:1238706. https://doi.org/10.3389/FPHAR.2023.1238706/XML/NLM.
Article CAS PubMed PubMed Central Google Scholar
Yogasundaram H, Chappell MC, Braam B, Oudit GY. Cardiorenal syndrome and heart failure—challenges and opportunities. Can J Cardiol. 2019;35(9):1208–19. https://doi.org/10.1016/J.CJCA.2019.04.002.
Rondeaux J, Groussard D, Renet S, Tardif V, Dumesnil A, Chu A, … Fraineau S. Ezh2 emerges as an epigenetic checkpoint regulator during monocyte differentiation limiting cardiac dysfunction post-MI. Nat Commun. 2023;14(1):1-15. https://doi.org/10.1038/s41467-023-40186-0
Liu F, Chen J, Li Z, Meng X. Recent advances in epigenetics of age-related kidney diseases. Genes. 2022;13(5):796. https://doi.org/10.3390/GENES13050796.
Comments (0)