Acetyl-CoA Short-Chain Synthetase-2 Regulates Myocardial Ischemia/Reperfusion Injury by Targeting Histone Acetylation

Liu T, Hao Y, Zhang Z, et al. Advanced cardiac patches for the treatment of myocardial infarction. Circulation. 2024;25(149):2002–20. https://doi.org/10.1161/circulationaha.123.067097.

Article  Google Scholar 

Balda-Canizares JA, Tamariz L, Moreno-Zambrano D, et al. Increasing myocardial infarction mortality trends in a middle-income country. Cardiovasc Diagn Ther. 2018;4(8):493–9. https://doi.org/10.21037/cdt.2018.07.03.

Article  Google Scholar 

Rallidis LS, Xenogiannis I, Brilakis ES, et al. Causes, angiographic characteristics, and management of premature myocardial infarction: JACC State-of-the-art review. J Am Coll Cardiol. 2022;24(79):2431–49. https://doi.org/10.1016/j.jacc.2022.04.015.

Article  Google Scholar 

Pazoki R, Dehghan A, Evangelou E, et al. Genetic predisposition to high blood pressure and lifestyle factors. Circulation. 2018;7(137):653–61. https://doi.org/10.1161/CIRCULATIONAHA.117.030898.

Article  Google Scholar 

Perazzolo Marra M, Lima JA, Iliceto S. MRI in acute myocardial infarction. Eur Heart J. 2011;3(32):284–93. https://doi.org/10.1093/eurheartj/ehq409.

Article  Google Scholar 

Dorweiler B, Pruefer D, Andrasi TB, et al. Ischemia-reperfusion injury : pathophysiology and clinical implications. Eur J Trauma Emerg Surg. 2007;6(33):600–12. https://doi.org/10.1007/s00068-007-7152-z.

Article  Google Scholar 

Xiang Q, Yi X, Zhu XH, et al. Regulated cell death in myocardial ischemia-reperfusion injury. Trends Endocrinol Metab. 2024;3(35):219–34. https://doi.org/10.1016/j.tem.2023.10.010.

Article  CAS  Google Scholar 

Del Re DP, Amgalan D, Linkermann A, et al. Fundamental mechanisms of regulated cell death and implications for heart disease. Physiol Rev. 2019;4(99):1765–817. https://doi.org/10.1152/physrev.00022.2018.

Article  CAS  Google Scholar 

Buja LM. Pathobiology of myocardial and cardiomyocyte injury in ischemic heart disease: Perspective from seventy years of cell injury research. Exp Mol Pathol. 2024;(140):104944. https://doi.org/10.1016/j.yexmp.2024.104944

Li P, Dong XR, Zhang B, et al. Molecular mechanism and therapeutic targeting of necrosis, apoptosis, pyroptosis, and autophagy in cardiovascular disease. Chin Med J (Engl). 2021;22(134):2647–55. https://doi.org/10.1097/cm9.0000000000001772.

Article  Google Scholar 

Davidson SM, Adameová A, Barile L, et al. Mitochondrial and mitochondrial-independent pathways of myocardial cell death during ischaemia and reperfusion injury. J Cell Mol Med. 2020;7(24):3795–806. https://doi.org/10.1111/jcmm.15127.

Article  Google Scholar 

He S, Wang L, Miao L, et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell. 2009;6(137):1100–11. https://doi.org/10.1016/j.cell.2009.05.021.

Article  CAS  Google Scholar 

Cho YS, Challa S, Moquin D, et al. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell. 2009;6(137):1112–23. https://doi.org/10.1016/j.cell.2009.05.037.

Article  CAS  Google Scholar 

Zhu H, Sun A. Programmed necrosis in heart disease: Molecular mechanisms and clinical implications, J Mol Cell Cardiol. 2018;(116):125–34. https://doi.org/10.1016/j.yjmcc.2018.01.018

Pietrocola F, Galluzzi L, Bravo-San Pedro JM, et al. Acetyl coenzyme A: a central metabolite and second messenger. Cell Metab. 2015;6(21):805–21. https://doi.org/10.1016/j.cmet.2015.05.014.

Article  CAS  Google Scholar 

Trefely S, Doan MT, Snyder NW. Crosstalk between cellular metabolism and histone acetylation, Methods Enzymol. 2019;(626):1–21. https://doi.org/10.1016/bs.mie.2019.07.013

Ewida H, Benson H, Tareq S, et al. Molecular targets and small molecules modulating acetyl coenzyme A in physiology and diseases. ACS Pharmacol Transl Sci. 2025;1(8):36–46. https://doi.org/10.1021/acsptsci.4c00476.

Article  CAS  Google Scholar 

Moffett JR, Puthillathu N, Vengilote R, et al. Acetate revisited: a key biomolecule at the nexus of metabolism, epigenetics and oncogenesis-Part 1: Acetyl-CoA, Acetogenesis and Acyl-CoA Short-Chain Synthetases. Front Physiol. 2020;(11):580167. https://doi.org/10.3389/fphys.2020.580167

Schug ZT, Peck B, Jones DT, et al. Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress. Cancer Cell. 2015;1(27):57–71. https://doi.org/10.1016/j.ccell.2014.12.002.

Article  CAS  Google Scholar 

Li X, Yu W, Qian X, et al. Nucleus-translocated ACSS2 promotes gene transcription for lysosomal biogenesis and autophagy. Mol Cell. 2017;5(66):684-97.e9. https://doi.org/10.1016/j.molcel.2017.04.026.

Article  CAS  Google Scholar 

Mews P, Donahue G, Drake AM, et al. Acetyl-CoA synthetase regulates histone acetylation and hippocampal memory. Nature. 2017;7658(546):381–6. https://doi.org/10.1038/nature22405.

Article  CAS  Google Scholar 

Lin Y, Lin A, Cai L, et al. ACSS2-dependent histone acetylation improves cognition in mouse model of Alzheimer’s disease. Mol Neurodegener. 2023;1(18):47. https://doi.org/10.1186/s13024-023-00625-4.

Article  CAS  Google Scholar 

Comerford SA, Huang Z, Du X, et al. Acetate dependence of tumors. Cell. 2014;7(159):1591–602. https://doi.org/10.1016/j.cell.2014.11.020.

Article  CAS  Google Scholar 

Bulusu V, Tumanov S, Michalopoulou E, et al. Acetate recapturing by nuclear acetyl-CoA Synthetase 2 prevents loss of histone acetylation during oxygen and serum limitation. Cell Rep. 2017;3(18):647–58. https://doi.org/10.1016/j.celrep.2016.12.055.

Article  CAS  Google Scholar 

Tang J, Zhuang S. Histone acetylation and DNA methylation in ischemia/reperfusion injury. Clin Sci (Lond). 2019;4(133):597–609. https://doi.org/10.1042/cs20180465.

Article  CAS  Google Scholar 

Wang K, Li Y, Qiang T, et al., Role of epigenetic regulation in myocardial ischemia/reperfusion injury. Pharmacol Res. 2021;(170):105743. https://doi.org/10.1016/j.phrs.2021.105743.

Sun T, Ding W, Xu T, et al. Parkin regulates programmed necrosis and myocardial ischemia/reperfusion injury by targeting cyclophilin-D. Antioxid Redox Signal. 2019;16(31):1177–93. https://doi.org/10.1089/ars.2019.7734.

Article  CAS  Google Scholar 

Li X, Qian X, Lu Z. Local histone acetylation by ACSS2 promotes gene transcription for lysosomal biogenesis and autophagy. Autophagy. 2017;10(13):1790–1. https://doi.org/10.1080/15548627.2017.1349581.

Article  CAS  Google Scholar 

Wang JX, Zhang XJ, Li Q, et al. MicroRNA-103/107 regulate programmed necrosis and myocardial ischemia/reperfusion injury through targeting FADD. Circ Res. 2015;4(117):352–63. https://doi.org/10.1161/circresaha.117.305781.

Article  Google Scholar 

Xu T, Ding W, Ao X, et al. ARC regulates programmed necrosis and myocardial ischemia/reperfusion injury through the inhibition of mPTP opening. Redox Biol 2019;(20):414–26. https://doi.org/10.1016/j.redox.2018.10.023.

Degterev A, Huang Z, Boyce M, et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol. 2005;2(1):112–9. https://doi.org/10.1038/nchembio711.

Article  CAS  Google Scholar 

Zhang T, Zhang Y, Cui M, et al. CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress-induced myocardial necroptosis. Nat Med. 2016;2(22):175–82. https://doi.org/10.1038/nm.4017.

Article  CAS  Google Scholar 

Eisenberg T, Knauer H, Schauer A, et al. Induction of autophagy by spermidine promotes longevity. Nat Cell Biol. 2009;11(11):1305–14. https://doi.org/10.1038/ncb1975.

Article  CAS  PubMed  Google Scholar 

Zincarelli C, Soltys S, Rengo G, et al. Analysis of AAV serotypes 1–9 mediated gene expression and tropism in mice after systemic injection. Mol Ther. 2008;6(16):1073–80. https://doi.org/10.1038/mt.2008.76.

Article  CAS  Google Scholar 

Calhoun S, Duan L, Maki CG. Acetyl-CoA synthetases ACSS1 and ACSS2 are 4-hydroxytamoxifen responsive factors that promote survival in tamoxifen treated and estrogen deprived cells. Transl Oncol. 2022;(19):101386. https://doi.org/10.1016/j.tranon.2022.101386.

Zhao S, Jang C, Liu J, et al. Dietary fructose feeds hepatic lipogenesis via microbiota-derived acetate. Nature. 2020;7800(579):586–91. https://doi.org/10.1038/s41586-020-2101-7.

Article  CAS  Google Scholar 

Mews P, Egervari G, Nativio R, et al. Alcohol metabolism contributes to brain histone acetylation. Nature. 2019;7780(574):717–21. https://doi.org/10.1038/s41586-019-1700-7.

Article  CAS  Google Scholar 

Maslov LN, Popov SV, Naryzhnaya NV, et al. The regulation of necroptosis and perspectives for the development of new drugs preventing ischemic/reperfusion of cardiac injury. Apoptosis. 2022;9–10(27):697–719. https://doi.org/10.1007/s10495-022-01760-x.

Article  CAS  Google Scholar 

Leng Y, Zhang Y, Li X, et al. Receptor interacting protein kinases 1/3: the potential therapeutic target for cardiovascular inflammatory diseases. Front Pharmacol. 2021;(12):762334. https://doi.org/10.3389/fphar.2021.762334.

Tallquist MD, Molkentin JD. Redefining the identity of cardiac fibroblasts. Nat Rev Cardiol. 2017;8(14):484–91. https://doi.org/10.1038/nrcardio.2017.57.

Article  Google Scholar 

Comments (0)

No login
gif