Hollenberg SM, Singer M. Pathophysiology of sepsis-induced cardiomyopathy. Nat Rev Cardiol. 2021;18:424–34. https://doi.org/10.1038/s41569-020-00492-2.
Liu YC, Yu MM, Shou ST, Chai YF. Sepsis-induced cardiomyopathy: mechanisms and treatments. Front Immunol. 2017;8:1021. https://doi.org/10.3389/fimmu.2017.01021.
Article CAS PubMed PubMed Central Google Scholar
Fang X, Ardehali H, Min J, Wang F. The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease. Nat Rev Cardiol. 2023;20:7–23. https://doi.org/10.1038/s41569-022-00735-4.
Hasegawa D, Ishisaka Y, Dugar S, Maeda T, Nishida K, Prasitlumkum N, Sato R. Prevalence and prognosis of sepsis-induced cardiomyopathy: a systematic review and meta-analysis. J Intensive Care Med. 2023;38:797–808. https://doi.org/10.1177/08850666231180526.
Lin YM, Lee MC, Toh HS, Chang WT, Chen SY, Kuo FH, Tang HJ, Hua YM, Wei D, Melgarejo J, Zhang ZY, Liao CT. Association of sepsis-induced cardiomyopathy and mortality: a systematic review and meta-analysis. Ann Intensive Care. 2022;12:112. https://doi.org/10.1186/s13613-022-01089-3.
Article PubMed PubMed Central Google Scholar
Vallabhajosyula S, Shankar A, Vojjini R, Cheungpasitporn W, Sundaragiri PR, DuBrock HM, Sekiguchi H, Frantz RP, Cajigas HR, Kane GC, Oh JK. Impact of right ventricular dysfunction on short-term and long-term mortality in sepsis: a meta-analysis of 1,373 patients. Chest. 2021;159:2254–63. https://doi.org/10.1016/j.chest.2020.12.016.
Article PubMed PubMed Central Google Scholar
Lima MR, Silva D. Septic cardiomyopathy: a narrative review. Rev Port Cardiol. 2023;42:471–81. https://doi.org/10.1016/j.repc.2021.05.020.
Beesley SJ, Weber G, Sarge T, Nikravan S, Grissom CK, Lanspa MJ, Shahul S, Brown SM. Septic cardiomyopathy. Crit Care Med. 2018;46:625–34. https://doi.org/10.1097/ccm.0000000000002851.
Havaldar AA. Evaluation of sepsis induced cardiac dysfunction as a predictor of mortality. Cardiovasc Ultrasound. 2018;16:31. https://doi.org/10.1186/s12947-018-0149-4.
Article PubMed PubMed Central Google Scholar
Liu J, Dai M, Yang H, Song L, Chen K, Wang Y, Hua M. Serum level of soluble CD14 subtype predicts long-term prognosis in sepsis patients with cardiac dysfunction. Ann Palliat Med. 2020;9:2054–61. https://doi.org/10.21037/apm-20-1093.
Xu KZ, Xu P, Li JJ, Zuo AF, Wang SB, Han F. Predictors and nomogram of in-hospital mortality in sepsis-induced myocardial injury: a retrospective cohort study. BMC Anesthesiol. 2023;23:230. https://doi.org/10.1186/s12871-023-02189-8.
Article PubMed PubMed Central Google Scholar
Carbone F, Liberale L, Preda A, Schindler TH, Montecucco F. Septic cardiomyopathy: from pathophysiology to the clinical setting. Cells. 2022;11:2833. https://doi.org/10.3390/cells11182833.
Article CAS PubMed PubMed Central Google Scholar
Lanspa MJ, Cirulis MM, Wiley BM, Olsen TD, Wilson EL, Beesley SJ, Brown SM, Hirshberg EL, Grissom CK. Right ventricular dysfunction in early sepsis and septic shock. Chest. 2021;159:1055–63. https://doi.org/10.1016/j.chest.2020.09.274.
Innocenti F, Palmieri V, Stefanone VT, D’Argenzio F, Cigana M, Montuori M, Capretti E, De Paris A, Calcagno S, Tassinari I, Pini R. Comparison of Troponin I levels versus myocardial dysfunction on prognosis in sepsis. Intern Emerg Med. 2022;17:223–31. https://doi.org/10.1007/s11739-021-02701-3.
Jeong HS, Lee TH, Bang CH, Kim JH, Hong SJ. Risk factors and outcomes of sepsis-induced myocardial dysfunction and stress-induced cardiomyopathy in sepsis or septic shock: a comparative retrospective study. Medicine (Baltimore). 2018;97:e0263. https://doi.org/10.1097/md.0000000000010263.
Article CAS PubMed Google Scholar
Masson S, Caironi P, Fanizza C, Carrer S, Caricato A, Fassini P, Vago T, Romero M, Tognoni G, Gattinoni L, Latini R. Sequential N-terminal Pro-B-Type natriuretic peptide and high-sensitivity cardiac troponin measurements during albumin replacement in patients with severe sepsis or septic shock. Crit Care Med. 2016;44:707–16. https://doi.org/10.1097/ccm.0000000000001473.
Article CAS PubMed Google Scholar
Lu NF, Niu HX, Liu AQ, Chen YL, Liu HN, Zhao PH, Shao J, Xi XM. Types of septic cardiomyopathy: prognosis and influencing factors - a clinical study. Risk Manag Healthc Policy. 2024;17:1015–25. https://doi.org/10.2147/rmhp.s452803.
Article PubMed PubMed Central Google Scholar
Fu X, Lin X, Seery S, Zhao LN, Zhu HD, Xu J, Yu XZ. Speckle-tracking echocardiography for detecting myocardial dysfunction in sepsis and septic shock patients: A single emergency department study. World J Emerg Med. 2022;13:175–81. https://doi.org/10.5847/wjem.j.1920-8642.2022.057.
Article PubMed PubMed Central Google Scholar
Hur M, Kim H, Kim HJ, Yang HS, Magrini L, Marino R, Cardelli P, Di Somma S. Soluble ST2 has a prognostic role in patients with suspected sepsis. Ann Lab Med. 2015;35:570–7. https://doi.org/10.3343/alm.2015.35.6.570.
Article CAS PubMed PubMed Central Google Scholar
Wang L, Dai W, Zhu R, Long T, Zhang Z, Song Z, Mu S, Wang S, Wang H, Lei J, Zhang J, Xia W, Li G, Gao W, Zou H, Li Y, Zhan L. Testosterone and soluble ST2 as mortality predictive biomarkers in male patients with sepsis-induced cardiomyopathy. Front Med (Lausanne). 2023;10:1278879. https://doi.org/10.3389/fmed.2023.1278879.
Wang M, Gao Q, Guo S. Diagnostic and prognostic significance of apelin-13, APJ for sepsis in the emergency department: a prospective study. Heliyon. 2024;10:e28620. https://doi.org/10.1016/j.heliyon.2024.e28620.
Article CAS PubMed PubMed Central Google Scholar
Sanfilippo F, La Rosa V, Grasso C, Santonocito C, Minardi C, Oliveri F, Iacobelli R, Astuto M. Echocardiographic parameters and mortality in pediatric sepsis: a systematic review and meta-analysis. Pediatr Crit Care Med. 2021;22:251–61. https://doi.org/10.1097/pcc.0000000000002622.
Sevilla Berrios RA, O’Horo JC, Velagapudi V, Pulido JN. Correlation of left ventricular systolic dysfunction determined by low ejection fraction and 30-day mortality in patients with severe sepsis and septic shock: a systematic review and meta-analysis. J Crit Care. 2014;29:495–9. https://doi.org/10.1016/j.jcrc.2014.03.007.
Qian A, Zhang M, Zhao G. Dynamic detection of N-terminal pro-B-type natriuretic peptide helps to predict the outcome of patients with major trauma. Eur J Trauma Emerg Surg. 2015;41:57–64. https://doi.org/10.1007/s00068-014-0406-7.
Article CAS PubMed Google Scholar
Chen W, Zhao L, Liu P, Sheng B, Zhen J. The predictive value of plasma N-terminal pro-B-type natriuretic peptide levels in the evaluation of prognosis and the severity of patients with septic shock induced myocardial suppression. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2013;25:40–4. https://doi.org/10.3760/cma.j.issn.2095-4352.2013.01.011.
Article CAS PubMed Google Scholar
Lv X, Wang H. Pathophysiology of sepsis-induced myocardial dysfunction. Mil Med Res. 2016;3:30. https://doi.org/10.1186/s40779-016-0099-9.
Article PubMed PubMed Central Google Scholar
Klouche K, Pommet S, Amigues L, Bargnoux AS, Dupuy AM, Machado S, Serveaux-Delous M, Morena M, Jonquet O, Cristol JP. Plasma brain natriuretic peptide and troponin levels in severe sepsis and septic shock: relationships with systolic myocardial dysfunction and intensive care unit mortality. J Intensive Care Med. 2014;29:229–37. https://doi.org/10.1177/0885066612471621.
Yang Y, Leng J, Tian X, Wang H, Hao C. Brain natriuretic peptide and cardiac troponin I for prediction of the prognosis in cancer patients with sepsis. BMC Anesthesiol. 2021;21:159. https://doi.org/10.1186/s12871-021-01384-9.
Comments (0)