Fu X, Mishra R, Chen L, Arfat MY, Sharma S, Kingsbury T, Gunasekaran M, Saha P, Hong C, Yang P. Exosomes mediated fibrogenesis in dilated cardiomyopathy through a MicroRNA pathway. Iscience. 2023;26(2).
Arumuganainar D, Krishna Naik V, Ramadoss R, Balasundaram A, Victor DJ. Evaluation of CD44 antigen in type 2 diabetic patients with periodontitis: an immunohistochemical study. Dental Med Problems. 2024;61(2):225–231.
Yadalam PK, Arumuganainar D, Ronsivalle V, Di Blasio M, Badnjevic A, Marrapodi MM, Cervino G, Minervini G. Prediction of interactomic hub genes in PBMC cells in type 2 diabetes mellitus, dyslipidemia, and periodontitis. BMC Oral Health. 2024;24(1):385.
Article CAS PubMed PubMed Central Google Scholar
Abhinav RP, Bennett CM, Anjana RM, Pramodkumar TA, Senthilmurugan M, Livingston PM, Pradeepa R, Mohan V, Williams J. Expression of salivary and serum IGF-1 and IGFBP-3 in individuals with diabetes and oral cancer. J Maxillofacial Oral Surg. 2024 1–9.
Satyadev N, Rivera MI, Nikolov NK, Fakoya AO. Exosomes as biomarkers and therapy in type 2 diabetes mellitus and associated complications. Front Physiol. 2023;14:1241096.
Article PubMed PubMed Central Google Scholar
Grubić Rotkvić P, Planinić Z, Liberati Pršo A-M, Šikić J, Galić E, Rotkvić L. The mystery of diabetic cardiomyopathy: from early concepts and underlying mechanisms to novel therapeutic possibilities. Int J Mol Sci. 2021;22(11):5973.
Primer KR, Psaltis PJ, Tan JT, Bursill CA. The role of high-density lipoproteins in endothelial cell metabolism and diabetes-impaired angiogenesis. Int J Mol Sci. 2020;21(10):3633.
Article CAS PubMed PubMed Central Google Scholar
Culic O, Gruwel M, Schrader J. Energy turnover of vascular endothelial cells. Am J Physiol Cell Physiol. 1997;273(1):C205–13.
Haspula D, Vallejos AK, Moore TM, Tomar N, Dash RK, Hoffmann BR. Influence of a hyperglycemic microenvironment on a diabetic versus healthy rat vascular endothelium reveals distinguishable mechanistic and phenotypic responses. Front Physiol. 2019;10:558.
Article PubMed PubMed Central Google Scholar
Yan D, Cai Y, Luo J, Liu J, Li X, Ying F, Xie X, Xu A, Ma X, Xia Z. FOXO1 contributes to diabetic cardiomyopathy via inducing imbalanced oxidative metabolism in type 1 diabetes. J Cell Mol Med. 2020;24(14):7850–61.
Article CAS PubMed PubMed Central Google Scholar
Stanley WC, Lopaschuk GD, McCormack JG. Regulation of energy substrate metabolism in the diabetic heart. Cardiovasc Res. 1997;34(1):25–33.
Article CAS PubMed Google Scholar
Weber B, Franz N, Marzi I, Henrich D, Leppik L. Extracellular vesicles as mediators and markers of acute organ injury: current concepts. Eur J Trauma Emerg Surg. 2022;48(3):1525–44.
Van Niel G, d’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19(4):213–28.
Zhang J, Chen C, Hu B, Niu X, Liu X, Zhang G, Zhang C, Li Q, Wang Y. Exosomes derived from human endothelial progenitor cells accelerate cutaneous wound healing by promoting angiogenesis through Erk1/2 signaling. Int J Biol Sci. 2016;12(12):1472.
Article CAS PubMed PubMed Central Google Scholar
Neves KB, Rios FJ, Sevilla-Montero J, Montezano AC, Touyz RM. Exosomes and the cardiovascular system: role in cardiovascular health and disease. J Physiol. 2023;601(22):4923–36.
Article CAS PubMed Google Scholar
Jopling HM, Odell AF, Hooper NM, Zachary IC, Walker JH, Ponnambalam S. Rab GTPase regulation of VEGFR2 trafficking and signaling in endothelial cells. Arterioscler Thromb Vasc Biol. 2009;29(7):1119–24.
Article CAS PubMed PubMed Central Google Scholar
Bose S, He H, Stauber T. Neurodegeneration upon dysfunction of endosomal/lysosomal CLC chloride transporters. Front Cell Dev Biol. 2021;9:639231.
Article PubMed PubMed Central Google Scholar
de Abreu RC, Fernandes H, da Costa Martins PA, Sahoo S, Emanueli C, Ferreira L. Native and bioengineered extracellular vesicles for cardiovascular therapeutics. Nat Rev Cardiol. 2020;17(11):685–697.
Colombo M, Moita C, Van Niel G, Kowal J, Vigneron J, Benaroch P, Manel N, Moita LF, Théry C, Raposo G. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci. 2013;126(24):5553–65.
Marsh M, van Meer G. No ESCRTs for exosomes. Science. 2008;319(5867):1191–2.
Article CAS PubMed Google Scholar
Rana S, Zöller M. Exosome target cell selection and the importance of exosomal tetraspanins: a hypothesis. Biochem Soc Trans. 2011;39(2):559–62.
Article CAS PubMed Google Scholar
De Gassart A, Géminard C, Février B, Raposo G, Vidal M. Lipid raft-associated protein sorting in exosomes. Blood. 2003;102(13):4336–44.
Saadi E, Tal S, Barki-Harrington L. Substrate-inactivated cyclooxygenase-2 is disposed of by exosomes through the ER–Golgi pathway. Biochem J. 2018;475(19):3141–51.
Article CAS PubMed Google Scholar
Svensson KJ, Christianson HC, Wittrup A, Bourseau-Guilmain E, Lindqvist E, Svensson LM, Mörgelin M, Belting M. Exosome uptake depends on ERK1/2-heat shock protein 27 signaling and lipid Raft-mediated endocytosis negatively regulated by caveolin-1. J Biol Chem. 2013;288(24):17713–24.
Article CAS PubMed PubMed Central Google Scholar
Ho CY, Solomon SD. A clinician’s guide to tissue Doppler imaging. Circulation. 2006;113(10):e396–8.
Lindsey ML, Kassiri Z, Virag JA, de Castro Brás LE, Scherrer-Crosbie M. Guidelines for measuring cardiac physiology in mice. Am J Physiol-Heart Circulatory Physiol. 2018;314(4):H733-H752.
Ng AC, Auger D, Delgado V, van Elderen SG, Bertini M, Siebelink H-M, van der Geest RJ, Bonetti C, van der Velde ET, de Roos A. Association between diffuse myocardial fibrosis by cardiac magnetic resonance contrast-enhanced T1 mapping and subclinical myocardial dysfunction in diabetic patients: a pilot study. Circulation: Cardiovasc Imaging. 2012;5(1):51–59.
Zygmunciak P, Stróżna K, Błażowska O, Mrozikiewicz-Rakowska B. Extracellular vesicles in diabetic cardiomyopathy—state of the art and future perspectives. Int J Mol Sci. 2024;25(11):6117.
Article CAS PubMed PubMed Central Google Scholar
Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54(6):1615–1625.
De Geest B, Mishra M. Role of oxidative stress in diabetic cardiomyopathy. Antioxidants. 2022;11(4):784.
Article CAS PubMed PubMed Central Google Scholar
Horal M, Zhang Z, Stanton R, Virkamäki A, Loeken MR. Activation of the hexosamine pathway causes oxidative stress and abnormal embryo gene expression: involvement in diabetic teratogenesis. Birth Defects Res A. 2004;70(8):519–27.
De Marchi E, Baldassari F, Bononi A, Wieckowski MR, Pinton P. Oxidative stress in cardiovascular diseases and obesity: role of p66Shc and protein kinase C. Oxid Med Cell Longev. 2013;2013(1):564961.
PubMed PubMed Central Google Scholar
Anderson EJ, Kypson AP, Rodriguez E, Anderson CA, Lehr EJ, Neufer PD. Substrate-specific derangements in mitochondrial metabolism and redox balance in the atrium of the type 2 diabetic human heart. J Am Coll Cardiol. 2009;54(20):1891–8.
Article CAS PubMed PubMed Central Google Scholar
van de Weijer T, Schrauwen-Hinderling VB, Schrauwen P. Lipotoxicity in type 2 diabetic cardiomyopathy. Cardiovasc Res. 2011;92(1):10–8.
Wang X, Gu H, Huang W, Peng J, Li Y, Yang L, Qin D, Essandoh K, Wang Y, Peng T. Hsp20-mediated activation of exosome biogenesis in cardiomyocytes improves cardiac function and angiogenesis in diabetic mice. Diabetes. 2016;65(10):3111–28.
Article CAS PubMed PubMed Central Google Scholar
Davidson SM, Riquelme JA, Takov K, Vicencio JM, Boi-Doku C, Khoo V, Doreth C, Radenkovic D, Lavandero S, Yellon DM. Cardioprotection mediated by exosomes is impaired in the setting of type II diabetes but can be rescued by the use of non-diabetic exosomes in vitro. J Cell Mol Med. 2018;22(1):141–51.
Article CAS PubMed Google Scholar
Lambert H, Charette SJ, Bernier AF, Guimond A, Landry J. HSP27 multimerization mediated by phosphorylation-sensitive intermolecular interactions at the amino terminus. J Biol Chem. 1999;274(14):9378–85.
Comments (0)