Mensah GA, Roth GA, Fuster V. The global burden of cardiovascular diseases and risk factors: 2020 and beyond. J Am Coll Cardiol. 2019;74:2529–32. https://doi.org/10.1016/j.jacc.2019.10.009.
Blindness GBD, Vision Impairment C, Vision Loss Expert Group of the Global Burden of Disease S. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight: an analysis for the Global Burden of Disease Study. Lancet Glob Health. 2021;9:e144-e160. https://doi.org/10.1016/S2214-109X(20)30489-7
Hoole SP, Bambrough P. Recent advances in percutaneous coronary intervention. Heart. 2020;106:1380–6. https://doi.org/10.1136/heartjnl-2019-315707.
Article CAS PubMed Google Scholar
Omeh DJ, Shlofmitz E (2023) Restenosis. In: StatPearls. Treasure Island (FL) ineligible companies. Disclosure: Evan Shlofmitz declares no relevant financial relationships with ineligible companies.
Zhang Y, Yang Y, Xiao J, Sun Y, Yang S, Fu X. Effect of multidimensional comprehensive intervention on medication compliance, social function and incidence of MACE in patients undergoing PCI. Am J Transl Res. 2021;13:8058–66.
PubMed PubMed Central Google Scholar
Zhu Y, Xian X, Wang Z, Bi Y, Chen Q, Han X, Tang D, Chen R. Research Progress on the Relationship between Atherosclerosis and Inflammation. Biomolecules. 2018;8 https://doi.org/10.3390/biom8030080
Wu MY, Li CJ, Hou MF, Chu PY. New Insights into the Role of Inflammation in the Pathogenesis of Atherosclerosis. Int J Mol Sci. 2017;18 https://doi.org/10.3390/ijms18102034
Fratta Pasini AM, Stranieri C, Busti F, Di Leo EG, Girelli D, Cominacini L. New insights into the role of ferroptosis in cardiovascular diseases. Cells. 2023;12. https://doi.org/10.3390/cells12060867.
Martinez GJ, Celermajer DS, Patel S. The NLRP3 inflammasome and the emerging role of colchicine to inhibit atherosclerosis-associated inflammation. Atherosclerosis. 2018;269:262–71. https://doi.org/10.1016/j.atherosclerosis.2017.12.027.
Article CAS PubMed Google Scholar
Ravingerova T, Kindernay L, Bartekova M, Ferko M, Adameova A, Zohdi V, Bernatova I, Ferenczyova K, Lazou A. The Molecular Mechanisms of Iron Metabolism and Its Role in Cardiac Dysfunction and Cardioprotection. Int J Mol Sci. 2020;21. https://doi.org/10.3390/ijms21217889.
Dos Santos L, Bertoli SR, Avila RA, Marques VB. Iron overload, oxidative stress and vascular dysfunction: evidences from clinical studies and animal models. Biochim Biophys Acta Gen Subj. 2022;1866:130172. https://doi.org/10.1016/j.bbagen.2022.130172.
Article CAS PubMed Google Scholar
Chen X, Li X, Xu X, Li L, Liang N, Zhang L, Lv J, Wu YC, Yin H. Ferroptosis and cardiovascular disease: role of free radical-induced lipid peroxidation. Free Radic Res. 2021;55:405–15. https://doi.org/10.1080/10715762.2021.1876856.
Article CAS PubMed Google Scholar
Ganji M, Nardi V, Prasad M, Jordan KL, Bois MC, Franchi F, Zhu XY, Tang H, Young MD, Lerman LO, Lerman A. Carotid plaques from symptomatic patients are characterized by local increase in xanthine oxidase expression. Stroke. 2021;52:2792–801. https://doi.org/10.1161/STROKEAHA.120.032964.
Article CAS PubMed Google Scholar
Forcina GC, Dixon SJ. GPX4 at the crossroads of lipid homeostasis and ferroptosis. Proteomics. 2019;19:e1800311. https://doi.org/10.1002/pmic.201800311.
Article CAS PubMed Google Scholar
Bahr TM, Christensen RD, Ward DM, Meng F, Jackson LK, Doyle K, Christensen DR, Harvey AG, Yaish HM. Ferritin in serum and urine: a pilot study. Blood Cells Mol Dis. 2019;76:59–62. https://doi.org/10.1016/j.bcmd.2019.02.001.
Article CAS PubMed PubMed Central Google Scholar
Hu J, Hu N, Hu T, Zhang J, Han D, Wang H. Associations between preprocedural carotid artery perivascular fat density and early in-stent restenosis after carotid artery stenting. Heliyon. 2023;9:e16220. https://doi.org/10.1016/j.heliyon.2023.e16220.
Article PubMed PubMed Central Google Scholar
Yang K, Song H, Yin D. PDSS2 inhibits the ferroptosis of vascular endothelial cells in atherosclerosis by activating Nrf2. J Cardiovasc Pharmacol. 2021;77:767–76. https://doi.org/10.1097/FJC.0000000000001030.
Article CAS PubMed PubMed Central Google Scholar
Yu W, Liu W, Xie D, Wang Q, Xu C, Zhao H, Lv J, He F, Chen B, Yamamoto T, Koyama H, Cheng J. High level of uric acid promotes atherosclerosis by targeting NRF2-mediated autophagy dysfunction and ferroptosis. Oxid Med Cell Longev. 2022;2022:9304383. https://doi.org/10.1155/2022/9304383.
Article CAS PubMed PubMed Central Google Scholar
Guo Z, Ran Q, Roberts LJ 2nd, Zhou L, Richardson A, Sharan C, Wu D, Yang H. Suppression of atherogenesis by overexpression of glutathione peroxidase-4 in apolipoprotein E-deficient mice. Free Radic Biol Med. 2008;44:343–52. https://doi.org/10.1016/j.freeradbiomed.2007.09.009.
Article CAS PubMed Google Scholar
Liu Y, Ye T, Chen L, Jin T, Sheng Y, Wu G, Zong G. Systemic immune-inflammation index predicts the severity of coronary stenosis in patients with coronary heart disease. Coron Artery Dis. 2021;32:715–20. https://doi.org/10.1097/MCA.0000000000001037.
Alfonso F, Diez-Villanueva P, Rivero F. CHA(2)DS(2)-VAS(C) clinical score to predict in-stent restenosis. Angiology. 2018;69:653–6. https://doi.org/10.1177/0003319717736159.
Liu S, Yang H, Liu C, Liu Z, Hou J, Wei M, Luo S, Zhou Y, Wang P, Fu Z. A risk score for predicting in-stent restenosis in patients with premature acute myocardial infarction undergoing percutaneous coronary intervention with drug-eluting stent. Heliyon. 2024;10:e34077. https://doi.org/10.1016/j.heliyon.2024.e34077.
Article CAS PubMed PubMed Central Google Scholar
Gai MT, Yan SQ, Wang MY, Ruze A, Zhao L, Li QL, Zhao BH, Deng AX, Hu S, Gao XM. Comparison of Gensini score and SYNTAX score for predicting in-stent restenosis in patients with coronary artery disease and drug-eluting stent implantation. Sci Rep. 2025;15:1077. https://doi.org/10.1038/s41598-025-85191-z.
Comments (0)