Feigin VL, Brainin M, Norrving B, et al. World Stroke Organization (WSO): global stroke fact sheet 2022. Int J Stroke. 2022;17(1):18–29. https://doi.org/10.1177/17474930211065917.
Einarson TR, Acs A, Ludwig C, Panton UH. Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007–2017. Cardiovasc Diabetol. 2018;17(1):83. https://doi.org/10.1186/s12933-018-0728-6.
Article PubMed PubMed Central Google Scholar
American Diabetes Association Professional Practice C. 10. Cardiovascular disease and risk management: standards of care in diabetes-2024. Diabetes Care. 2024;47(Suppl 1):S179-S218. https://doi.org/10.2337/dc24-S010.
Lopaschuk GD, Verma S. Mechanisms of cardiovascular benefits of sodium glucose co-transporter 2 (SGLT2) inhibitors: a state-of-the-art review. JACC Basic Transl Sci. 2020;5(6):632–44. https://doi.org/10.1016/j.jacbts.2020.02.004.
Article PubMed PubMed Central Google Scholar
Usman MS, Siddiqi TJ, Anker SD, et al. Effect of SGLT2 inhibitors on cardiovascular outcomes across various patient populations. J Am Coll Cardiol. 2023;81(25):2377–87. https://doi.org/10.1016/j.jacc.2023.04.034.
Article PubMed CAS Google Scholar
Joseph JJ, Deedwania P, Acharya T, et al. Comprehensive management of cardiovascular risk factors for adults with type 2 diabetes: a scientific statement from the American Heart Association. Circulation. 2022;145(9):e722–59. https://doi.org/10.1161/CIR.0000000000001040.
Zelniker TA, Braunwald E. Mechanisms of cardiorenal effects of sodium-glucose cotransporter 2 inhibitors: JACC state-of-the-art review. J Am Coll Cardiol. 2020;75(4):422–34. https://doi.org/10.1016/j.jacc.2019.11.031.
Article PubMed CAS Google Scholar
Zhou Z, Lindley RI, Radholm K, et al. Canagliflozin and stroke in type 2 diabetes mellitus. Stroke. 2019;50(2):396–404. https://doi.org/10.1161/STROKEAHA.118.023009.
Article PubMed CAS Google Scholar
Tsai WH, Chuang SM, Liu SC, et al. Effects of SGLT2 inhibitors on stroke and its subtypes in patients with type 2 diabetes: a systematic review and meta-analysis. Sci Rep. 2021;11(1):15364. https://doi.org/10.1038/s41598-021-94945-4.
Article PubMed PubMed Central CAS Google Scholar
Chang SN, Chen JJ, Huang PS, et al. Sodium-glucose cotransporter-2 inhibitor prevents stroke in patients with diabetes and atrial fibrillation. J Am Heart Assoc. 2023;12(10):e027764. https://doi.org/10.1161/JAHA.122.027764.
Article PubMed PubMed Central CAS Google Scholar
Guo M, Ding J, Li J, et al. SGLT2 inhibitors and risk of stroke in patients with type 2 diabetes: a systematic review and meta-analysis. Diabetes Obes Metab. 2018;20(8):1977–82. https://doi.org/10.1111/dom.13295.
Article PubMed CAS Google Scholar
Teo YN, Ting AZH, Teo YH, et al. Effects of sodium/glucose cotransporter 2 (SGLT2) inhibitors and combined SGLT1/2 inhibitors on cardiovascular, metabolic, renal, and safety outcomes in patients with diabetes: a network meta-analysis of 111 randomized controlled trials. Am J Cardiovasc Drugs. 2022;22(3):299–323. https://doi.org/10.1007/s40256-022-00528-7.
Article PubMed CAS Google Scholar
Wu JH, Foote C, Blomster J, et al. Effects of sodium-glucose cotransporter-2 inhibitors on cardiovascular events, death, and major safety outcomes in adults with type 2 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2016;4(5):411–9. https://doi.org/10.1016/S2213-8587(16)00052-8.
Article PubMed CAS Google Scholar
Aggarwal R, Bhatt DL, Szarek M, et al. Effect of sotagliflozin on major adverse cardiovascular events: a prespecified secondary analysis of the SCORED randomised trial. Lancet Diabetes Endocrinol. 2025. https://doi.org/10.1016/S2213-8587(24)00362-0.
Bhatt DL, Szarek M, Pitt B, et al. Sotagliflozin in patients with diabetes and chronic kidney disease. N Engl J Med. 2021;384(2):129–39. https://doi.org/10.1056/NEJMoa2030186.
Article PubMed CAS Google Scholar
Patel SM, Kang YM, Im K, et al. Sodium-glucose cotransporter-2 inhibitors and major adverse cardiovascular outcomes: a SMART-C collaborative meta-analysis. Circulation. 2024;149(23):1789–801. https://doi.org/10.1161/CIRCULATIONAHA.124.069568.
Article PubMed PubMed Central CAS Google Scholar
Sanchez-Munoz E, Requena-Ibanez JA, Badimon JJ. Dual SGLT1 and SGLT2 inhibition: more than the sum of its parts. Rev Esp Cardiol (Engl Ed). 2024;77(7):510–4. https://doi.org/10.1016/j.rec.2024.01.011.
Santos-Gallego CG, Requena-Ibanez JA, San Antonio R, et al. Empagliflozin ameliorates adverse left ventricular remodeling in nondiabetic heart failure by enhancing myocardial energetics. J Am Coll Cardiol. 2019;73(15):1931–44. https://doi.org/10.1016/j.jacc.2019.01.056.
Article PubMed CAS Google Scholar
Santos-Gallego CG, Requena-Ibanez JA, San Antonio R, et al. Empagliflozin ameliorates diastolic dysfunction and left ventricular fibrosis/stiffness in nondiabetic heart failure: a multimodality study. JACC Cardiovasc Imaging. 2021;14(2):393–407. https://doi.org/10.1016/j.jcmg.2020.07.042.
Santos-Gallego CG, Requena-Ibanez JA, Picatoste B, et al. Cardioprotective effect of empagliflozin and circulating ketone bodies during acute myocardial infarction. Circ Cardiovasc Imaging. 2023;16(4):e015298. https://doi.org/10.1161/CIRCIMAGING.123.015298.
Perez MS, Rodriguez-Capitan J, Requena-Ibanez JA, et al. Rationale and design of the SOTA-P-CARDIA trial (ATRU-V): sotagliflozin in HFpEF patients without diabetes. Cardiovasc Drugs Ther. 2023. https://doi.org/10.1007/s10557-023-07469-6.
Gronda E, Jessup M, Iacoviello M, Palazzuoli A, Napoli C. Glucose metabolism in the kidney: neurohormonal activation and heart failure development. J Am Heart Assoc. 2020;9(23):e018889. https://doi.org/10.1161/JAHA.120.018889.
Article PubMed PubMed Central CAS Google Scholar
Stanger L, Yalavarthi P, Flores M, et al. Comparison of the anti-platelet and anti-thrombotic effects of the dual SGLT1/2 inhibitor sotagliflozin to the relatively selective SGLT2 inhibitor empagliflozin. Blood. 2024;144(Supplement 1):3933. https://doi.org/10.1182/blood-2024-202339.
Takano M, Kondo H, Harada T, et al. Empagliflozin suppresses the differentiation/maturation of human epicardial preadipocytes and improves paracrine secretome profile. JACC Basic Transl Sci. 2023;8(9):1081–97. https://doi.org/10.1016/j.jacbts.2023.05.007.
Article PubMed PubMed Central Google Scholar
Marfella R, Scisciola L, D’Onofrio N, et al. Sodium-glucose cotransporter-2 (SGLT2) expression in diabetic and non-diabetic failing human cardiomyocytes. Pharmacol Res. 2022;184:106448. https://doi.org/10.1016/j.phrs.2022.106448.
Article PubMed CAS Google Scholar
Scisciola L, Paolisso P, Belmonte M, et al. Myocardial sodium-glucose cotransporter 2 expression and cardiac remodelling in patients with severe aortic stenosis: the BIO-AS study. Eur J Heart Fail. 2024;26(2):471–82. https://doi.org/10.1002/ejhf.3145.
Article PubMed CAS Google Scholar
Park SH, Belcastro E, Hasan H, et al. Angiotensin II-induced upregulation of SGLT1 and 2 contributes to human microparticle-stimulated endothelial senescence and dysfunction: protective effect of gliflozins. Cardiovasc Diabetol. 2021;20(1):65. https://doi.org/10.1186/s12933-021-01252-3.
Article PubMed PubMed Central CAS Google Scholar
Voss AA, Diez-Sampedro A, Hirayama BA, Loo DD, Wright EM. Imino sugars are potent agonists of the human glucose sensor SGLT3. Mol Pharmacol. 2007;71(2):628–34. https://doi.org/10.1124/mol.106.030288.
Article PubMed CAS Google Scholar
Forester BR, Zhang R, Schuhler B, et al. Knocking out sodium glucose-linked transporter 5 prevents fructose-induced renal oxidative stress and salt-sensitive hypertension. Hypertension. 2024;81(6):1296–307.
Comments (0)