Libby P. The changing landscape of atherosclerosis. Nature. 2021;592(7855):524–33. https://doi.org/10.1038/s41586-021-03392-8.
Article CAS PubMed Google Scholar
Liang G, Wang S, Shao J, et al. Tenascin-X mediates flow-induced suppression of EndMT and atherosclerosis. Circ Res. 2022;130(11):1647–59. https://doi.org/10.1161/CIRCRESAHA.121.320694.
Article CAS PubMed Google Scholar
Kong P, Cui ZY, Huang XF, et al. Inflammation and atherosclerosis: signaling pathways and therapeutic intervention. Signal Transduct Target Ther. 2022;7(1):131. https://doi.org/10.1038/s41392-022-00955-7.
Article CAS PubMed PubMed Central Google Scholar
Zhu X, Qiu C, Wang Y, et al. FGFR1 SUMOylation coordinates endothelial angiogenic signaling in angiogenesis. Proc Natl Acad Sci U S A. 2022;119(26):e2202631119. https://doi.org/10.1073/pnas.2202631119.
Article CAS PubMed PubMed Central Google Scholar
Tan D, Lu M, Cai Y, et al. SUMOylation of Rho-associated protein kinase 2 induces goblet cell metaplasia in allergic airways. Nat Commun. 2023;14(1):3887. https://doi.org/10.1038/s41467-023-39600-4.
Article CAS PubMed PubMed Central Google Scholar
Xie M, Yu J, Ge S, Huang J, Fan X. SUMOylation homeostasis in tumorigenesis. Cancer Lett. 2020;469:301–9. https://doi.org/10.1016/j.canlet.2019.11.004.
Article CAS PubMed Google Scholar
Liu YZ, Xiao X, Hu CT, et al. SUMOylation in atherosclerosis. Clin Chim Acta. 2020;508:228–33. https://doi.org/10.1016/j.cca.2020.05.033
Liu H, Zhang J, Xue Z, et al. Deficiency of protein inhibitor of activated STAT3 exacerbates atherosclerosis by modulating VSMC phenotypic switching. Atherosclerosis. 2023;380:117195. https://doi.org/10.1016/j.atherosclerosis.2023.117195.
Article CAS PubMed Google Scholar
Wang K, Zhou W, Hu G, et al. TFEB SUMOylation in macrophages accelerates atherosclerosis by promoting the formation of foam cells through inhibiting lysosomal activity. Cell Mol Life Sci. 2023;80(12):358. https://doi.org/10.1007/s00018-023-04981-8.
Article CAS PubMed PubMed Central Google Scholar
Chen F, Hou W, Yu X, et al. CBX4 deletion promotes tumorigenesis under Kras(G12D) background by inducing genomic instability. Signal Transduct Target Ther. 2023;8(1):343. https://doi.org/10.1038/s41392-023-01623-0.
Article CAS PubMed PubMed Central Google Scholar
Cheutin T, Cavalli G. Polycomb silencing: from linear chromatin domains to 3D chromosome folding. Curr Opin Genet Dev. 2014;25:30–7. https://doi.org/10.1016/j.gde.2013.11.016.
Article CAS PubMed Google Scholar
Schuettengruber B, Bourbon HM, Di Croce L, Cavalli G. Genome regulation by polycomb and trithorax: 70 years and counting. Cell. 2017;171(1):34–57. https://doi.org/10.1016/j.cell.2017.08.002.
Article CAS PubMed Google Scholar
Ren L, Li Z, Zhou Y, et al. CBX4 promotes antitumor immunity by suppressing Pdcd1 expression in T cells. Mol Oncol. 2023;17(12):2694–708. https://doi.org/10.1002/1878-0261.13516.
Article CAS PubMed PubMed Central Google Scholar
Wang X, Li L, Wu Y, et al. CBX4 suppresses metastasis via recruitment of HDAC3 to the Runx2 promoter in colorectal carcinoma. Cancer Res. 2016;76(24):7277–89. https://doi.org/10.1158/0008-5472.Can-16-2100.
Article CAS PubMed Google Scholar
Guo JW, Liu X, Zhang TT, et al. Hepatocyte TMEM16A deletion retards NAFLD progression by ameliorating hepatic glucose metabolic disorder. Adv Sci (Weinh). 2020;7(10):1903657. https://doi.org/10.1002/advs.201903657.
Article CAS PubMed Google Scholar
Guo J, Song Z, Yu J, et al. Hepatocyte-specific TMEM16A deficiency alleviates hepatic ischemia/reperfusion injury via suppressing GPX4-mediated ferroptosis. Cell Death Dis. 2022;13(12):1072. https://doi.org/10.1038/s41419-022-05518-w.
Article CAS PubMed PubMed Central Google Scholar
Liu X, Guo JW, Lin XC, et al. Macrophage NFATc3 prevents foam cell formation and atherosclerosis: evidence and mechanisms. Eur Heart J. 2021;42(47):4847–61. https://doi.org/10.1093/eurheartj/ehab660.
Article CAS PubMed Google Scholar
Li C, Song Z, Gao P, et al. Transaldolase inhibits CD36 expression by modulating glutathione-p38 signaling, exerting protective effects against macrophage foam cell formation. Acta Biochim Biophys Sin (Shanghai). 2023;55(9):1496–505. https://doi.org/10.3724/abbs.2023146.
Article CAS PubMed Google Scholar
Wolf D, Ley K. Immunity and inflammation in atherosclerosis. Circ Res. 2019;124(2):315–27. https://doi.org/10.1161/circresaha.118.313591.
Article CAS PubMed PubMed Central Google Scholar
Chen Q, Huang L, Pan D, Zhu LJ, Wang YX. Cbx4 Sumoylates Prdm16 to regulate adipose tissue thermogenesis. Cell Rep. 2018;22(11):2860–72. https://doi.org/10.1016/j.celrep.2018.02.057.
Article CAS PubMed PubMed Central Google Scholar
Li J, Xu Y, Long XD, et al. Cbx4 governs HIF-1α to potentiate angiogenesis of hepatocellular carcinoma by its SUMO E3 ligase activity. Cancer Cell. 2014;25(1):118–31. https://doi.org/10.1016/j.ccr.2013.12.008.
Article CAS PubMed Google Scholar
Bao Q, Zhang B, Zhou L, et al. CNP ameliorates macrophage inflammatory response and atherosclerosis. Circ Res. 2024;134(8):e72–91. https://doi.org/10.1161/circresaha.123.324086.
Article CAS PubMed Google Scholar
Aarup A, Pedersen TX, Junker N, et al. Hypoxia-inducible factor-1α expression in macrophages promotes development of atherosclerosis. Arterioscler Thromb Vasc Biol. 2016;36(9):1782–90. https://doi.org/10.1161/atvbaha.116.307830.
Article CAS PubMed Google Scholar
Li X, Xia Q, Mao M, et al. Annexin-A1 SUMOylation regulates microglial polarization after cerebral ischemia by modulating IKKα stability via selective autophagy. Sci Adv. 2021;7(4). https://doi.org/10.1126/sciadv.abc5539.
Zhou X, Jiang Y, Wang Y, et al. Endothelial FIS1 DeSUMOylation protects against hypoxic pulmonary hypertension. Circ Res. 2023;133(6):508–31. https://doi.org/10.1161/circresaha.122.321200.
Article CAS PubMed Google Scholar
Vertegaal ACO. Signalling mechanisms and cellular functions of SUMO. Nat Rev Mol Cell Biol. 2022;23(11):715–31. https://doi.org/10.1038/s41580-022-00500-y.
Article CAS PubMed Google Scholar
Dehnavi S, Sadeghi M, Penson PE, et al. The role of protein SUMOylation in the pathogenesis of atherosclerosis. J Clin Med. 2019;8(11). https://doi.org/10.3390/jcm8111856
Hou P, Fang J, Liu Z, et al. Macrophage polarization and metabolism in atherosclerosis. Cell Death Dis. 2023;14(10):691. https://doi.org/10.1038/s41419-023-06206-z.
Article PubMed PubMed Central Google Scholar
Tabas I, Bornfeldt KE. Macrophage phenotype and function in different stages of atherosclerosis. Circ Res. 2016;118(4):653–67. https://doi.org/10.1161/circresaha.115.306256.
Article CAS PubMed PubMed Central Google Scholar
Meng Q, Ma M, Zhang W, et al. The gut microbiota during the progression of a
Comments (0)