Macrophage CBX4 Potentiates Atherosclerosis by its SUMO E3 Ligase Activity

Libby P. The changing landscape of atherosclerosis. Nature. 2021;592(7855):524–33. https://doi.org/10.1038/s41586-021-03392-8.

Article  CAS  PubMed  Google Scholar 

Liang G, Wang S, Shao J, et al. Tenascin-X mediates flow-induced suppression of EndMT and atherosclerosis. Circ Res. 2022;130(11):1647–59. https://doi.org/10.1161/CIRCRESAHA.121.320694.

Article  CAS  PubMed  Google Scholar 

Kong P, Cui ZY, Huang XF, et al. Inflammation and atherosclerosis: signaling pathways and therapeutic intervention. Signal Transduct Target Ther. 2022;7(1):131. https://doi.org/10.1038/s41392-022-00955-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu X, Qiu C, Wang Y, et al. FGFR1 SUMOylation coordinates endothelial angiogenic signaling in angiogenesis. Proc Natl Acad Sci U S A. 2022;119(26):e2202631119. https://doi.org/10.1073/pnas.2202631119.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tan D, Lu M, Cai Y, et al. SUMOylation of Rho-associated protein kinase 2 induces goblet cell metaplasia in allergic airways. Nat Commun. 2023;14(1):3887. https://doi.org/10.1038/s41467-023-39600-4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xie M, Yu J, Ge S, Huang J, Fan X. SUMOylation homeostasis in tumorigenesis. Cancer Lett. 2020;469:301–9. https://doi.org/10.1016/j.canlet.2019.11.004.

Article  CAS  PubMed  Google Scholar 

Liu YZ, Xiao X, Hu CT, et al. SUMOylation in atherosclerosis. Clin Chim Acta. 2020;508:228–33. https://doi.org/10.1016/j.cca.2020.05.033

Liu H, Zhang J, Xue Z, et al. Deficiency of protein inhibitor of activated STAT3 exacerbates atherosclerosis by modulating VSMC phenotypic switching. Atherosclerosis. 2023;380:117195. https://doi.org/10.1016/j.atherosclerosis.2023.117195.

Article  CAS  PubMed  Google Scholar 

Wang K, Zhou W, Hu G, et al. TFEB SUMOylation in macrophages accelerates atherosclerosis by promoting the formation of foam cells through inhibiting lysosomal activity. Cell Mol Life Sci. 2023;80(12):358. https://doi.org/10.1007/s00018-023-04981-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen F, Hou W, Yu X, et al. CBX4 deletion promotes tumorigenesis under Kras(G12D) background by inducing genomic instability. Signal Transduct Target Ther. 2023;8(1):343. https://doi.org/10.1038/s41392-023-01623-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cheutin T, Cavalli G. Polycomb silencing: from linear chromatin domains to 3D chromosome folding. Curr Opin Genet Dev. 2014;25:30–7. https://doi.org/10.1016/j.gde.2013.11.016.

Article  CAS  PubMed  Google Scholar 

Schuettengruber B, Bourbon HM, Di Croce L, Cavalli G. Genome regulation by polycomb and trithorax: 70 years and counting. Cell. 2017;171(1):34–57. https://doi.org/10.1016/j.cell.2017.08.002.

Article  CAS  PubMed  Google Scholar 

Ren L, Li Z, Zhou Y, et al. CBX4 promotes antitumor immunity by suppressing Pdcd1 expression in T cells. Mol Oncol. 2023;17(12):2694–708. https://doi.org/10.1002/1878-0261.13516.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang X, Li L, Wu Y, et al. CBX4 suppresses metastasis via recruitment of HDAC3 to the Runx2 promoter in colorectal carcinoma. Cancer Res. 2016;76(24):7277–89. https://doi.org/10.1158/0008-5472.Can-16-2100.

Article  CAS  PubMed  Google Scholar 

Guo JW, Liu X, Zhang TT, et al. Hepatocyte TMEM16A deletion retards NAFLD progression by ameliorating hepatic glucose metabolic disorder. Adv Sci (Weinh). 2020;7(10):1903657. https://doi.org/10.1002/advs.201903657.

Article  CAS  PubMed  Google Scholar 

Guo J, Song Z, Yu J, et al. Hepatocyte-specific TMEM16A deficiency alleviates hepatic ischemia/reperfusion injury via suppressing GPX4-mediated ferroptosis. Cell Death Dis. 2022;13(12):1072. https://doi.org/10.1038/s41419-022-05518-w.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu X, Guo JW, Lin XC, et al. Macrophage NFATc3 prevents foam cell formation and atherosclerosis: evidence and mechanisms. Eur Heart J. 2021;42(47):4847–61. https://doi.org/10.1093/eurheartj/ehab660.

Article  CAS  PubMed  Google Scholar 

Li C, Song Z, Gao P, et al. Transaldolase inhibits CD36 expression by modulating glutathione-p38 signaling, exerting protective effects against macrophage foam cell formation. Acta Biochim Biophys Sin (Shanghai). 2023;55(9):1496–505. https://doi.org/10.3724/abbs.2023146.

Article  CAS  PubMed  Google Scholar 

Wolf D, Ley K. Immunity and inflammation in atherosclerosis. Circ Res. 2019;124(2):315–27. https://doi.org/10.1161/circresaha.118.313591.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen Q, Huang L, Pan D, Zhu LJ, Wang YX. Cbx4 Sumoylates Prdm16 to regulate adipose tissue thermogenesis. Cell Rep. 2018;22(11):2860–72. https://doi.org/10.1016/j.celrep.2018.02.057.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li J, Xu Y, Long XD, et al. Cbx4 governs HIF-1α to potentiate angiogenesis of hepatocellular carcinoma by its SUMO E3 ligase activity. Cancer Cell. 2014;25(1):118–31. https://doi.org/10.1016/j.ccr.2013.12.008.

Article  CAS  PubMed  Google Scholar 

Bao Q, Zhang B, Zhou L, et al. CNP ameliorates macrophage inflammatory response and atherosclerosis. Circ Res. 2024;134(8):e72–91. https://doi.org/10.1161/circresaha.123.324086.

Article  CAS  PubMed  Google Scholar 

Aarup A, Pedersen TX, Junker N, et al. Hypoxia-inducible factor-1α expression in macrophages promotes development of atherosclerosis. Arterioscler Thromb Vasc Biol. 2016;36(9):1782–90. https://doi.org/10.1161/atvbaha.116.307830.

Article  CAS  PubMed  Google Scholar 

Li X, Xia Q, Mao M, et al. Annexin-A1 SUMOylation regulates microglial polarization after cerebral ischemia by modulating IKKα stability via selective autophagy. Sci Adv. 2021;7(4). https://doi.org/10.1126/sciadv.abc5539.

Zhou X, Jiang Y, Wang Y, et al. Endothelial FIS1 DeSUMOylation protects against hypoxic pulmonary hypertension. Circ Res. 2023;133(6):508–31. https://doi.org/10.1161/circresaha.122.321200.

Article  CAS  PubMed  Google Scholar 

Vertegaal ACO. Signalling mechanisms and cellular functions of SUMO. Nat Rev Mol Cell Biol. 2022;23(11):715–31. https://doi.org/10.1038/s41580-022-00500-y.

Article  CAS  PubMed  Google Scholar 

Dehnavi S, Sadeghi M, Penson PE, et al. The role of protein SUMOylation in the pathogenesis of atherosclerosis. J Clin Med. 2019;8(11). https://doi.org/10.3390/jcm8111856

Hou P, Fang J, Liu Z, et al. Macrophage polarization and metabolism in atherosclerosis. Cell Death Dis. 2023;14(10):691. https://doi.org/10.1038/s41419-023-06206-z.

Article  PubMed  PubMed Central  Google Scholar 

Tabas I, Bornfeldt KE. Macrophage phenotype and function in different stages of atherosclerosis. Circ Res. 2016;118(4):653–67. https://doi.org/10.1161/circresaha.115.306256.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meng Q, Ma M, Zhang W, et al. The gut microbiota during the progression of a

Comments (0)

No login
gif