Aliakbari F et al (2024) The impact of hUC MSC-derived exosome-nanoliposome hybrids on alpha-synuclein fibrillation and. Neurotox Sci Adv 10:eadl3406. https://doi.org/10.1126/sciadv.adl3406
Alieva A et al (2020) VCP expression decrease as a biomarker of preclinical and early clinical stages of Parkinson’s. Disease Sci Rep 10:827. https://doi.org/10.1038/s41598-020-57938-3
Article CAS PubMed Google Scholar
Arkan S, Ljungberg M, Kirik D, Hansen C (2021) DNAJB6 suppresses alpha-synuclein induced pathology in an animal model of Parkinson’s. Disease Neurobiol Dis 158:105477. https://doi.org/10.1016/j.nbd.2021.105477
Article CAS PubMed Google Scholar
Axelsen TM, Woldbye DPD (2018) Gene therapy for Parkinson’s disease. Update J Parkinsons Dis 8:195–215. https://doi.org/10.3233/JPD-181331
Cai Y, Zhang MM, Wang M, Jiang ZH, Tan ZG (2022) Bone Marrow-Derived mesenchymal stem Cell-Derived exosomes containing Gli1 alleviate microglial activation and neuronal apoptosis in vitro and in a mouse Parkinson disease model by direct inhibition of Sp1 signaling. J Neuropathol Exp Neurol 81:522–534. https://doi.org/10.1093/jnen/nlac037
Article CAS PubMed Google Scholar
Checler F, Alves da Costa C (2022) Parkin as a molecular Bridge linking Alzheimer’s and Parkinson’s diseases?? Biomolecules 12. https://doi.org/10.3390/biom12040559
Chen HX et al (2020) Exosomes derived from mesenchymal stem cells repair a Parkinson’s disease model by inducing autophagy. Cell Death Dis 11:288. https://doi.org/10.1038/s41419-020-2473-5
Article CAS PubMed PubMed Central Google Scholar
Chen W, Wu P, Jin C, Chen Y, Li C, Qian H (2024) Advances in the application of extracellular vesicles derived from three-dimensional culture of stem cells. J Nanobiotechnol 22:215. https://doi.org/10.1186/s12951-024-02455-y
Eastham MJ, Pelava A, Wells GR, Watkins NJ, Schneider C (2023) RPS27a and RPL40, which are produced as ubiquitin fusion proteins, are not essential for p53 signalling biomolecules. 13. https://doi.org/10.3390/biom13060898
Faial T (2024) Gene therapy for Parkinson’s disease models. Nat Genet 56:8. https://doi.org/10.1038/s41588-023-01632-3
Article CAS PubMed Google Scholar
Foltynie T, Bruno V, Fox S, Kuhn AA, Lindop F, Lees AJ (2024) Medical, surgical, and physical treatments for Parkinson’. S Disease Lancet 403:305–324. https://doi.org/10.1016/S0140-6736(23)01429-0
Geng Y et al (2023) FTO-targeted SiRNA delivery by MSC-derived exosomes synergistically alleviates dopaminergic neuronal death in Parkinson’s disease via m6A-dependent regulation of ATM mRNA. J Transl Med 21:652. https://doi.org/10.1186/s12967-023-04461-4
Article CAS PubMed PubMed Central Google Scholar
Gray R et al (2022) Long-term effectiveness of adjuvant treatment with Catechol-O-Methyltransferase or monoamine oxidase B inhibitors compared with dopamine agonists among patients with Parkinson disease uncontrolled by Levodopa therapy: the PD MED randomized clinical trial. JAMA Neurol 79:131–140. https://doi.org/10.1001/jamaneurol.2021.4736
Gualerzi A, Picciolini S, Bedoni M, Guerini FR, Clerici M, Agliardi C (2024) Extracellular Vesicles as Biomarkers for Parkinson’s Disease: How Far from Clinical Translation? Int J Mol Sci 25. https://doi.org/10.3390/ijms25021136
Guo D, Liu Z, Zhou J, Ke C, Li D (2024) Significance of programmed cell death pathways in neurodegenerative diseases. Int J Mol Sci 25. https://doi.org/10.3390/ijms25189947
Hu S et al (2020) Phosphorylation of Tau and alpha-Synuclein induced neurodegeneration in MPTP mouse model of Parkinson’s disease. Neuropsychiatr Dis Treat 16:651–663. https://doi.org/10.2147/NDT.S235562
Article CAS PubMed PubMed Central Google Scholar
Izquierdo-Altarejos P, Martinez-Garcia M, Atienza-Perez I, Hernandez A, Moreno-Manzano V, Llansola M, Felipo V (2024a) Extracellular vesicles from mesenchymal stem cells reverse neuroinflammation and restore motor coordination in hyperammonemic rats. J Neuroimmune Pharmacol 19:52. https://doi.org/10.1007/s11481-024-10153-7
Izquierdo-Altarejos P, Moreno-Manzano V, Felipo V (2024b) Pathological and therapeutic effects of extracellular vesicles in neurological and neurodegenerative diseases. Neural Regen Res 19:55–61. https://doi.org/10.4103/1673-5374.375301
Article CAS PubMed Google Scholar
Jeong DJ et al (2024) The Mst1/2-BNIP3 axis is required for mitophagy induction and neuronal viability under mitochondrial stress. Exp Mol Med 56:674–685. https://doi.org/10.1038/s12276-024-01198-y
Article CAS PubMed PubMed Central Google Scholar
Kumar MA et al (2024) Extracellular vesicles as tools and targets in therapy for diseases signal. Transduct Target Ther 9:27. https://doi.org/10.1038/s41392-024-01735-1
Li H et al (2022a) Loss of RPS27a expression regulates the cell cycle, apoptosis, and proliferation via the RPL11-MDM2-p53 pathway in lung adenocarcinoma cells. J Exp Clin Cancer Res 41:33. https://doi.org/10.1186/s13046-021-02230-z
Article CAS PubMed PubMed Central Google Scholar
Li J et al (2022b) Identification of diagnostic genes for both Alzheimer’s disease and metabolic syndrome by the machine learning algorithm. Front Immunol 13:1037318. https://doi.org/10.3389/fimmu.2022.1037318
Article CAS PubMed PubMed Central Google Scholar
Li S et al (2024) A crazy trio in Parkinson’s disease: metabolism alteration, alpha-synuclein aggregation, and oxidative stress Mol Cell Biochem. https://doi.org/10.1007/s11010-024-04985-3
Liang X et al (2023) HucMSC-Exo promote mucosal healing in experimental colitis by accelerating intestinal stem cells and epithelium regeneration via Wnt signaling pathway. Int J Nanomed 18:2799–2818. https://doi.org/10.2147/IJN.S402179
Lind-Holm Mogensen F, Scafidi A, Poli A, Michelucci A (2023) PARK7/DJ-1 in microglia: implications in Parkinson’s disease and relevance as a therapeutic target. J Neuroinflammation 20:95. https://doi.org/10.1186/s12974-023-02776-z
Article PubMed PubMed Central Google Scholar
Luo J, Zhao H, Chen L, Liu M (2023a) Multifaceted functions of RPS27a: an unconventional ribosomal protein. J Cell Physiol 238:485–497. https://doi.org/10.1002/jcp.30941
Article CAS PubMed Google Scholar
Luo S, Wang D, Zhang Z (2023b) Post-translational modification and mitochondrial function in Parkinson’s disease. Front Mol Neurosci 16:1329554. https://doi.org/10.3389/fnmol.2023.1329554
Article CAS PubMed Google Scholar
Morris HR, Spillantini MG, Sue CM, Williams-Gray CH (2024) The pathogenesis of Parkinson’s disease. Lancet 403:293–304. https://doi.org/10.1016/S0140-6736(23)01478-2
Article CAS PubMed Google Scholar
Murotomi K et al (2023) Cyclo-glycylproline attenuates hydrogen peroxide-induced cellular damage mediated by the MDM2-p53 pathway in human neural stem cells. J Cell Physiol 238:434–446. https://doi.org/10.1002/jcp.30940
Article CAS PubMed Google Scholar
Pan J et al (2023) The imbalance of p53-Park7 signaling Axis induces Iron homeostasis dysfunction in Doxorubicin-Challenged cardiomyocytes. Adv Sci (Weinh) 10:e2206007. https://doi.org/10.1002/advs.202206007
Article CAS PubMed Google Scholar
Pandey M, Karmakar V, Majie A, Dwivedi M, Md S, Gorain B (2024) The SH-SY5Y cell line: a valuable tool for Parkinson’s disease drug discovery. Expert Opin Drug Discov 19:303–316. https://doi.org/10.1080/17460441.2023.2293158
Article CAS PubMed Google Scholar
Prasad EM, Hung SY (2020) Behavioral Tests in Neurotoxin-Induced Animal Models of Parkinson’s Disease Antioxidants. (Basel) 9. https://doi.org/10.3390/antiox9101007
Rowlands J, Moore DJ (2024) VPS35 and retromer dysfunction in Parkinson’s disease. Philos Trans R Soc Lond B Biol Sci 379:20220384. https://doi.org/10.1098/rstb.2022.0384
Comments (0)