RIPK1: A Promising Target for Intervention Neuroinflammation

Alvarez JI, Cayrol R, Prat A (1812) Disruption of central nervous system barriers in multiple sclerosis. Biochim Biophys Acta 2011:252–264. https://doi.org/10.1016/j.bbadis.2010.06.017

Article  CAS  Google Scholar 

Andersson U, Tracey KJ (2011) HMGB1 is a therapeutic target for sterile inflammation and infection. Annu Rev Immunol 29:139–162. https://doi.org/10.1146/annurev-immunol-030409-101323

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bai Y, Qiao Y, Li M, Yang W, Chen H, Wu Y, Zhang H (2024) RIPK1 inhibitors: A key to unlocking the potential of necroptosis in drug development. Eur J Med Chem 265:116123. https://doi.org/10.1016/j.ejmech.2024.116123

Article  CAS  PubMed  Google Scholar 

Barthels D, Das H (2018) Current Advances in Ischemic Stroke Research and Therapies, Biochimica et Biophysica Acta. Mol Basis Dis 1866:165260. https://doi.org/10.1016/j.bbadis.2018.09.012

Article  CAS  Google Scholar 

Bertheloot D, Latz E, Franklin BS (2021) Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. Cell Mol Immunol 18:1106–1121. https://doi.org/10.1038/s41423-020-00630-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bertrand MJM, Milutinovic S, Dickson KM, Ho WC, Boudreault A, Durkin J, Gillard JW, Jaquith JB, Morris SJ, Barker PA (2008) cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell 30:689–700. https://doi.org/10.1016/j.molcel.2008.05.014

Article  CAS  PubMed  Google Scholar 

Caccamo A, Branca C, Piras IS, Ferreira E, Huentelman MJ, Liang WS, Readhead B, Dudley JT, Spangenberg EE, Green KN, Belfiore R, Winslow W, Oddo S (2017) Necroptosis activation in Alzheimer’s disease. Nat Neurosci 20:1236–1246. https://doi.org/10.1038/nn.4608

Article  CAS  PubMed  Google Scholar 

Cai Y, Liu J, Wang B, Sun M, Yang H (2022) Microglia in the Neuroinflammatory Pathogenesis of Alzheimer’s Disease and Related Therapeutic Targets. Front Immunol 13:856376. https://doi.org/10.3389/fimmu.2022.856376

Article  CAS  PubMed  PubMed Central  Google Scholar 

Candelario-Jalil E, Dijkhuizen RM, Magnus T (2022) Neuroinflammation, Stroke, Blood-Brain Barrier Dysfunction, and Imaging Modalities. Stroke 53:1473–1486. https://doi.org/10.1161/STROKEAHA.122.036946

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cao L, Mu W (2021) Necrostatin-1 and necroptosis inhibition: Pathophysiology and therapeutic implications. Pharmacol Res 163:105297. https://doi.org/10.1016/j.phrs.2020.105297

Article  CAS  PubMed  Google Scholar 

Chavez-Tapia N, Sayeed MA, Luxmi S, Kasper DJ, Xue F, Shen Y, Fan W, Yuan W, Du B (2024) Safety and efficacy of selective RIPK1 inhibitor SIR1–365 in hospitalized patients with severe COVID-19: A multicenter, randomized, double-blind, phase 1b trial, J Intensive Med S2667100X24000938. https://doi.org/10.1016/j.jointm.2024.07.003

Chen A-Q, Fang Z, Chen X-L, Yang S, Zhou Y-F, Mao L, Xia Y-P, Jin H-J, Li Y-N, You M-F, Wang X-X, Lei H, He Q-W, Hu B (2019) Microglia-derived TNF-α mediates endothelial necroptosis aggravating blood brain–barrier disruption after ischemic stroke. Cell Death Dis 10:487. https://doi.org/10.1038/s41419-019-1716-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen I-T, Chen H-C, Lo Y-H, Lai P-Y, Hsieh F-Y, Wu Y-H, Shih H-M, Lai M-Z (2021) Promyelocytic leukemia protein targets MK2 to promote cytotoxicity. EMBO Rep 22:e52254. https://doi.org/10.15252/embr.202052254

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen X-Y, Dai Y-H, Wan X-X, Hu X-M, Zhao W-J, Ban X-X, Wan H, Huang K, Zhang Q, Xiong K (2022) ZBP1-Mediated Necroptosis: Mechanisms and Therapeutic Implications. Molecules 28:52. https://doi.org/10.3390/molecules28010052

Article  CAS  PubMed  PubMed Central  Google Scholar 

Choo Z, Loh AHP, Chen ZX (2019) Destined to Die: Apoptosis and Pediatric Cancers. Cancers (Basel) 11:1623. https://doi.org/10.3390/cancers11111623

Article  CAS  PubMed  Google Scholar 

Cirulli ET, Lasseigne BN, Petrovski S, Sapp PC, Dion PA, Leblond CS, Couthouis J, Lu Y-F, Wang Q, Krueger BJ, Ren Z, Keebler J, Han Y, Levy SE, Boone BE, Wimbish JR, Waite LL, Jones AL, Carulli JP, Day-Williams AG, Staropoli JF, Xin WW, Chesi A, Raphael AR, McKenna-Yasek D, Cady J, de Jong JV, Kenna KP, Smith BN, Topp S, Miller J, Gkazi A, Consortium FS, Al-Chalabi A, van den Berg LH, Veldink J, Silani V, Ticozzi N, Shaw CE, Baloh RH, Appel S, Simpson E, Lagier-Tourenne C, Pulst SM, Gibson S, Trojanowski JQ, Elman L, McCluskey L, Grossman M, Shneider NA, Chung WK, Ravits JM, Glass JD, Sims KB, Deerlin VMV, Maniatis T, Hayes SD, Ordureau A, Swarup S, Landers J, Baas F, Allen AS, Bedlack RS, Harper JW, Gitler AD, Rouleau GA, Brown R, Harms MB, Cooper GM, Harris T, Myers RM, Goldstein DB (2015) Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways, Science (New York, N.Y.) 347: 1436. https://doi.org/10.1126/science.aaa3650

Clot P-F, Farenc C, Suratt BT, Krahnke T, Tardat A, Florian P, Pomponio R, Patel N, Wiekowski M, Lin Y, Terrier B, Staudinger H (2024) Immunomodulatory and clinical effects of receptor-interacting protein kinase 1 (RIPK1) inhibitor eclitasertib (SAR443122) in patients with severe COVID-19: a phase 1b, randomized, double-blinded, placebo-controlled study. Respir Res 25:107. https://doi.org/10.1186/s12931-024-02670-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Colonna M, Butovsky O (2017) Microglia Function in the Central Nervous System During Health and Neurodegeneration. Annu Rev Immunol 35:441. https://doi.org/10.1146/annurev-immunol-051116-052358

Article  CAS  PubMed  PubMed Central  Google Scholar 

D.T. Inc, Denali Therapeutics Announces Positive Clinical Results and Regulatory Progress for Development Programs in Amyotrophic Lateral Sclerosis (ALS), GlobeNewswire News Room (2021). https://www.globenewswire.com/en/news-release/2021/10/06/2309876/0/en/Denali-Therapeutics-Announces-Positive-Clinical-Results-and-Regulatory-Progress-for-Development-Programs-in-Amyotrophic-Lateral-Sclerosis-ALS.html. Accessed 26 March 2025.

Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909. https://doi.org/10.1016/s0896-6273(03)00568-3

Article  CAS  PubMed  Google Scholar 

Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, Cuny GD, Mitchison TJ, Moskowitz MA, Yuan J (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1:112–119. https://doi.org/10.1038/nchembio711

Article  CAS  PubMed  Google Scholar 

Degterev A, Hitomi J, Germscheid M, Ch’en IL, Korkina O, Teng X, Abbott D, Cuny GD, Yuan C, Wagner G, Hedrick SM, Gerber SA, Lugovskoy A, Yuan J (2008) Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 4:313–321. https://doi.org/10.1038/nchembio.83

Article  CAS  PubMed  PubMed Central  Google Scholar 

Degterev A, Maki JL, Yuan J (2013) Activity and specificity of necrostatin-1, small-molecule inhibitor of RIP1 kinase. Cell Death Differ 20:366. https://doi.org/10.1038/cdd.2012.133

Article  CAS  PubMed  Google Scholar 

Degterev A, Ofengeim D, Yuan J (2019) Targeting RIPK1 for the treatment of human diseases. Proc Natl Acad Sci U S A 116:9714–9722. https://doi.org/10.1073/pnas.1901179116

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deng X-X, Li S-S, Sun F-Y (2019) Necrostatin-1 Prevents Necroptosis in Brains after Ischemic Stroke via Inhibition of RIPK1-Mediated RIPK3/MLKL Signaling. Aging Dis 10:807. https://doi.org/10.14336/AD.2018.0728

Article  PubMed  PubMed Central  Google Scholar 

Dhib-Jalbut S, Kalvakolanu DV (2015) Microglia and necroptosis: The culprits of neuronal cell death in multiple sclerosis. Cytokine 76:583–584. https://doi.org/10.1016/j.cyto.2015.06.004

Article  CAS  PubMed  Google Scholar 

Dionísio PA, Amaral JD, Rodrigues CMP (2020) Molecular mechanisms of necroptosis and relevance for neurodegenerative diseases. Int Rev Cell Mol Biol 353:31–82. https://doi.org/10.1016/bs.ircmb.2019.12.006

Article  CAS  PubMed  Google Scholar 

Dj S (2000) Toward a comprehensive theory for Alzheimer’s disease. Hypothesis: Alzheimer’s disease is caused by the cerebral accumulation and cytotoxicity of amyloid beta-protein, Annals of the New York Academy of Sciences 924. https://doi.org/10.1111/j.1749-6632.2000.tb05554.x.

Draber P, Kupka S, Reichert M, Draberova H, Lafont E, de Miguel D, Spilgies L, Surinova S, Taraborrelli L, Hartwig T, Rieser E, Martino L, Rittinger K, Walczak H (2015) LUBAC-Recruited CYLD and A20 Regulate Gene Activation and Cell Death by Exerting Opposing Effects on Linear Ubiquitin in Signaling Complexes. Cell Rep 13:2258–2272. https://doi.org/10.1016/j.celrep.2015.11.009

Article  CAS 

Comments (0)

No login
gif