COVID-19 Alters Inflammatory, Mitochondrial, and Protein Clearance Pathway Genes: Potential Implications for New-onset Parkinsonism in Patients

Aigbogun OP, Nwabufo CK, Owens MN et al (2022) An HPLC-UV validated bioanalytical method for measurement of in vitro phase 1 kinetics of α-synuclein binding bifunctional compounds. Xenobiotica 52:916–927. https://doi.org/10.1080/00498254.2022.2140315

Article  CAS  PubMed  Google Scholar 

Albrecht R, Rehling P, Chacinska A et al (2006) The Tim21 binding domain connects the preprotein translocases of both mitochondrial membranes. EMBO Rep 7:1233–1238. https://doi.org/10.1038/sj.embor.7400828

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barrachina M, Castaño E, Dalfó E et al (2006) Reduced ubiquitin C-terminal hydrolase-1 expression levels in dementia with Lewy bodies. Neurobiol Dis 22:265–273. https://doi.org/10.1016/j.nbd.2005.11.005

Article  CAS  PubMed  Google Scholar 

Bartels AL, Willemsen ATM, Kortekaas R et al (2008) Decreased blood-brain barrier P-glycoprotein function in the progression of Parkinson’s disease, PSP and MSA. J Neural Transm 115:1001–1009. https://doi.org/10.1007/s00702-008-0030-y

Article  CAS  PubMed  Google Scholar 

Barth S, Glick D, Macleod KF (2010) Autophagy: assays and artifacts. J Pathol 221:117–124. https://doi.org/10.1002/path.2694

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bellucci A, Navarria L, Zaltieri M et al (2011) Induction of the unfolded protein response by α-synuclein in experimental models of Parkinson’s disease: α-Synuclein accumulation induces the UPR. J Neurochem 116:588–605. https://doi.org/10.1111/j.1471-4159.2010.07143.x

Article  CAS  PubMed  Google Scholar 

Benítez-Burraco A, Herrera E, Cuetos F (2016) ¿Un déficit nuclear en la enfermedad de Parkinson? Neurologia 31:223–230. https://doi.org/10.1016/j.nrl.2015.05.006

Article  PubMed  Google Scholar 

Braak H, Del Tredici K, Rub U et al (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

Article  PubMed  Google Scholar 

Brás J, Gibbons E, Guerreiro R (2021) Genetics of synucleins in neurodegenerative diseases. Acta Neuropathol 141:471–490. https://doi.org/10.1007/s00401-020-02202-1

Article  CAS  PubMed  Google Scholar 

Chen F, Sugiura Y, Myers KG et al (2010) Ubiquitin carboxyl-terminal hydrolase L1 is required for maintaining the structure and function of the neuromuscular junction. Proc Natl Acad Sci USA 107:1636–1641. https://doi.org/10.1073/pnas.0911516107

Article  PubMed  PubMed Central  Google Scholar 

Chen L, Xie Z, Turkson S, Zhuang X (2015) A53T Human α-Synuclein Overexpression in Transgenic Mice Induces Pervasive Mitochondria Macroautophagy Defects Preceding Dopamine Neuron Degeneration. J Neurosci 35:890–905. https://doi.org/10.1523/JNEUROSCI.0089-14.2015

Article  CAS  PubMed  Google Scholar 

Chen S, Zhou Y, Chen Y, Gu J (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884–i890. https://doi.org/10.1093/bioinformatics/bty560

Article  CAS  PubMed  PubMed Central  Google Scholar 

Choi J, Levey AI, Weintraub ST et al (2004) Oxidative Modifications and Down-regulation of Ubiquitin Carboxyl-terminal Hydrolase L1 Associated with Idiopathic Parkinson’s and Alzheimer’s Diseases. J Biol Chem 279:13256–13264. https://doi.org/10.1074/jbc.M314124200

Article  CAS  PubMed  Google Scholar 

Cohen ME, Eichel R, Steiner-Birmanns B, et al (2020) A case of probable Parkinson’s disease after SARS-CoV-2 infection. The Lancet Neurology 19:. https://doi.org/10.1016/S1474-4422(20)30305-7

Contin M, Martinelli P, Mochi M et al (2005) Genetic polymorphism of catechol- O -methyltransferase and levodopa pharmacokinetic–pharmacodynamic pattern in patients with Parkinson’s disease. Mov Disord 20:734–739. https://doi.org/10.1002/mds.20410

Article  PubMed  Google Scholar 

Cooper AA, Gitler AD, Cashikar A et al (2006) α-Synuclein Blocks ER-Golgi Traffic and Rab1 Rescues Neuron Loss in Parkinson’s Models. Science 313:324–328. https://doi.org/10.1126/science.1129462

Article  CAS  PubMed  PubMed Central  Google Scholar 

Corvol J, Bonnet C, Charbonnier-Beaupel F et al (2011) The COMT Val158Met polymorphism affects the response to entacapone in Parkinson’s disease: A randomized crossover clinical trial. Ann Neurol 69:111–118. https://doi.org/10.1002/ana.22155

Article  CAS  PubMed  Google Scholar 

Coukos R, Krainc D (2024) Key genes and convergent pathogenic mechanisms in Parkinson disease. Nat Rev Neurosci. https://doi.org/10.1038/s41583-024-00812-2

Article  PubMed  Google Scholar 

Daly JL, Danson CM, Lewis PA et al (2023) Multi-omic approach characterises the neuroprotective role of retromer in regulating lysosomal health. Nat Commun 14:3086. https://doi.org/10.1038/s41467-023-38719-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Day JO, Mullin S (2021) The Genetics of Parkinson’s Disease and Implications for Clinical Practice. Genes (Basel) 12:1006. https://doi.org/10.3390/genes12071006

Article  CAS  PubMed  Google Scholar 

Escott‐Price V, for the International Parkinson’s Disease Genomics Consortium, Nalls MA, et al (2015) Polygenic risk of P arkinson disease is correlated with disease age at onset. Annals of Neurology 77:582–591. https://doi.org/10.1002/ana.24335

Faber I, Brandão PRP, Menegatti F et al (2020) Coronavirus Disease 2019 and Parkinsonism: A Non-post-encephalitic Case. Mov Disord 35:1721–1722. https://doi.org/10.1002/mds.28277

Article  CAS  PubMed  PubMed Central  Google Scholar 

Farrokhi MR, Iravanpour F, Nejabat N (2023) Development of Acute Transverse Myelitis following COVID-19 Infection: A Review on the Potential Pathways. Eur Neurol 86:209–216. https://doi.org/10.1159/000529927

Article  PubMed  Google Scholar 

Flønes IH, Toker L, Sandnes DA et al (2024) Mitochondrial complex I deficiency stratifies idiopathic Parkinson’s disease. Nat Commun 15:3631. https://doi.org/10.1038/s41467-024-47867-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Franco-Iborra S, Cuadros T, Parent A et al (2018) Defective mitochondrial protein import contributes to complex I-induced mitochondrial dysfunction and neurodegeneration in Parkinson’s disease. Cell Death Dis 9:1122. https://doi.org/10.1038/s41419-018-1154-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Frankish A, Diekhans M, Jungreis I et al (2021) GENCODE 2021. Nucleic Acids Res 49:D916–D923. https://doi.org/10.1093/nar/gkaa1087

Article  CAS  PubMed  Google Scholar 

Galvin JE, Uryu K, Lee VM-Y, Trojanowski JQ (1999) Axon pathology in Parkinson’s disease and Lewy body dementia hippocampus contains α-, β-, and γ-synuclein. Proc Natl Acad Sci USA 96:13450–13455. https://doi.org/10.1073/pnas.96.23.13450

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guarnieri JW, Dybas JM, Fazelinia H, et al (2023) Core mitochondrial genes are down-regulated during SARS-CoV-2 infection of rodent and human hosts. Sci Transl Med 15:eabq1533. https://doi.org/10.1126/scitranslmed.abq1533

Hou J, Qu F, Wu C et al (2012) Quantitative determination and pharmacokinetic study of the novel anti-Parkinson’s disease candidate drug FLZ in rat brain by high performance liquid chromatography-tandem mass spectrometry. J Pharm Biomed Anal 66:232–239. https://doi.org/10.1016/j.jpba.2012.03.001

Article  CAS  PubMed  Google Scholar 

Iravanpour F, Farrokhi MR, Jafarinia M, Oliaee RT (2023) The effect of SARS-CoV-2 on the development of Parkinson’s disease: the role of α-synuclein. Hum Cell 37:1–8. https://doi.org/10.1007/s13577-023-00988-2

Article  CAS  PubMed 

Comments (0)

No login
gif