Extracellular Vesicles from Peripheral Blood Mononuclear Cells of Hyperammonemic Rats Induce Neuroinflammation in Hippocampus, Impairing Memory and Learning in Normal Rats

Agrawal S, Umapathy S, Dhiman RK (2015) Minimal hepatic encephalopathy impairs quality of life. J Clin Exp Hepatol 5(Suppl 1):S42–S48. https://doi.org/10.1016/j.jceh.2014.11.006

Article  PubMed  Google Scholar 

Ahmed AO, Mantini AM, Fridberg DJ, Buckley PF (2015) Brain-derived neurotrophic factor (BDNF) and neurocognitive deficits in people with schizophrenia: a meta-analysis. Psychiatry Res 226(1):1–13. https://doi.org/10.1016/j.psychres.2014.12.069

Article  PubMed  CAS  Google Scholar 

Alberro A, Iparraguirre L, Fernandes A, Otaegui D (2021) Extracellular vesicles in blood: sources, effects, and applications. Int J Mol Sci 22(15):8163. https://doi.org/10.3390/ijms22158163

Article  PubMed  PubMed Central  CAS  Google Scholar 

Alonso M, Vianna MR, Depino AM, Mello e Souza T, Pereira P, Szapiro G, Viola H, Pitossi F, Izquierdo I, Medina JH (2002) BDNF-triggered events in the rat hippocampus are required for both short- and long-term memory formation. Hippocampus 12(4):551–560. https://doi.org/10.1002/hipo.10035

Article  PubMed  CAS  Google Scholar 

Arenas YM, Felipo V (2023) Sustained hyperammonemia activates NF-κB in purkinje neurons through activation of the TrkB-PI3K-AKT pathway by Microglia-Derived BDNF in a rat model of minimal hepatic encephalopathy. Mol Neurobiol 60(6):3071–3085. https://doi.org/10.1007/s12035-023-03264-4

Article  PubMed  CAS  Google Scholar 

Arenas YM, Cabrera-Pastor A, Juciute N et al (2020) Blocking glycine receptors reduces neuroinflammation and restores neurotransmission in cerebellum through ADAM17-TNFR1-NF-κβ pathway. J Neuroinflammation 17(1):269. https://doi.org/10.1186/s12974-020-01941-y

Article  PubMed  PubMed Central  CAS  Google Scholar 

Arenas YM, Balzano T, Ivaylova G, Llansola M, Felipo V (2022) The S1PR2-CCL2-BDNF-TrkB pathway mediates neuroinflammation and motor incoordination in hyperammonaemia. Neuropathol Appl Neurobiol 48(4):e12799. https://doi.org/10.1111/nan.12799

Article  PubMed  CAS  Google Scholar 

Arenas YM, Pérez-Martinez G, Montoliu C, Llansola M, Felipo V (2025) Extracellular vesicles from L. paracasei improve neuroinflammation, GABA neurotransmission and motor incoordination in hyperammonemic rats. Brain Behav Immun 123:556–570. https://doi.org/10.1016/j.bbi.2024.10.002

Article  PubMed  CAS  Google Scholar 

Babuta M, Szabo G (2022) Extracellular vesicles in inflammation: focus on the MicroRNA cargo of EVs in modulation of liver diseases. J Leukoc Biol 111(1):75–92. https://doi.org/10.1002/JLB.3MIR0321-156R

Article  PubMed  CAS  Google Scholar 

Balzano T, Dadsetan S, Forteza J et al (2020) Chronic hyperammonemia induces peripheral inflammation that leads to cognitive impairment in rats: reversed by anti-TNF-α treatment. J Hepatol 73(3):582–592. https://doi.org/10.1016/j.jhep.2019.01.008

Article  PubMed  CAS  Google Scholar 

Balzano T, Leone P, Ivaylova G et al (2021) Rifaximin prevents T-Lymphocytes and macrophages infiltration in cerebellum and restores motor incoordination in rats with mild liver damage. Biomedicines 9(8):1002. https://doi.org/10.3390/biomedicines9081002

Article  PubMed  PubMed Central  CAS  Google Scholar 

Boilard E (2018) Extracellular vesicles and their content in bioactive lipid mediators: more than a sack of MicroRNA. J Lipid Res 59(11):2037–2046. https://doi.org/10.1194/jlr.R084640

Article  PubMed  PubMed Central  CAS  Google Scholar 

Budni J, Bellettini-Santos T, Mina F, Garcez ML, Zugno AI (2015) The involvement of BDNF, NGF and GDNF in aging and alzheimer’s disease. Aging Dis 6(5):331–341. https://doi.org/10.14336/AD.2015.0825

Article  PubMed  PubMed Central  Google Scholar 

Buzas EI (2023) The roles of extracellular vesicles in the immune system. Nat REVsImmunol 23(4):236–250. https://doi.org/10.1038/s41577-022-00763-8

Article  CAS  Google Scholar 

Cabrera-Pastor A, Taoro L, Llansola M, Felipo V (2015) Roles of NMDA receptor and EAAC1 transporter in modulation of extracellular glutamate by low and high affinity AMPA receptors in cerebellum in vivo. Differential alteration in chronic hyperammonemia. ACS Chem Neurosci 16:1913–1921. https://doi.org/10.1021/acschemneuro.5b00212

Article  CAS  Google Scholar 

Cabrera-Pastor A, Hernandez-Rabaza V, Taoro-Gonzalez L et al (2016) In vivo administration of extracellular cGMP normalizes TNF-a and membrane expression of AMPA receptors in hippocampus and Spatial reference memory but not IL-1b, NMDA receptors in membrane and working memory in hyperammonemic rats. Brain Behav Immun 57:360–370. https://doi.org/10.1016/j.bbi.2016.05.011

Article  PubMed  CAS  Google Scholar 

Cabrera-Pastor A, Llansola M, Montoliu C et al (2019) Peripheral inflammation induces neuroinflammation that alters neurotransmission and cognitive and motor function in hepatic encephalopathy: underlying mechanisms and therapeutic implications. Acta Physiol (Oxf) 226(2):e13270. https://doi.org/10.1111/apha.13270

Article  PubMed  CAS  Google Scholar 

D’Mello C, Le T, Swain MG (2009) Cerebral microglia recruit monocytes into the brain in response to tumor necrosis factoralpha signaling during peripheral organ inflammation. J Neurosci 29(7):2089–2102. https://doi.org/10.1523/JNEUROSCI.3567-08.2009

Article  PubMed  PubMed Central  CAS  Google Scholar 

Dadsetan S, Balzano T, Forteza J et al (2016a) Reducing peripheral inflammation with Infliximab reduces neuroinflammation and improves cognition in rats with hepatic encephalopathy. Front Mol Neurosci 9:106. https://doi.org/10.3389/fnmol.2016.00106

Article  PubMed  PubMed Central  CAS  Google Scholar 

Dadsetan S, Balzano T, Forteza J et al (2016b) Infliximab reduces peripheral inflammation, neuroinflammation, and extracellular GABA in the cerebellum and improves learning and motor coordination in rats with hepatic encephalopathy. J Neuroinflammation 13(1):245. https://doi.org/10.1186/s12974-016-0710-8

Das K, Paul S, Mukherjee T et al (2023) Beyond macromolecules: extracellular vesicles as regulators of inflammatory diseases. Cells 12(15):1963. https://doi.org/10.3390/cells12151963

Article  PubMed  PubMed Central  CAS  Google Scholar 

de León-López CAM, Carretero-Rey M, Khan ZU (2025) AMPA receptors in synaptic plasticity, memory function, and brain diseases. Cell Mol Neurobiol 45(1):14. https://doi.org/10.1007/s10571-024-01529-7

Article  PubMed  Google Scholar 

Ding H, Chen J, Su M, Lin Z, Zhan H, Yang F, Li W, Xie J, Huang Y, Liu X, Liu B, Zhou X (2020) BDNF promotes activation of astrocytes and microglia contributing to neuroinflammation and mechanical allodynia in cyclophosphamide-induced cystitis. J Neuroinflammation 17(1):19. https://doi.org/10.1186/s12974-020-1704-0

Article  PubMed  PubMed Central  CAS  Google Scholar 

Elsaid MI, Rustgi VK (2020) Epidemiology of hepatic encephalopathy. Clin Liver Dis 24(2):157–174. https://doi.org/10.1016/j.cld.2020.01.001

Article  PubMed  Google Scholar 

Felipo V (2013) Hepatic encephalopathy: effects of liver failure on brain function. Nat REVsNeurosci 14(12):851–858. https://doi.org/10.1038/nrn3587

Article  CAS  Google Scholar 

Felipo V, Miñana MD, Azorín I, Grisolía S (1988) Induction of rat brain tubulin following ammonium ingestion. J Neurochem 51(4):1041–1045. https://doi.org/10.1111/j.1471-4159.1988.tb03065.x

Article  PubMed  CAS  Google Scholar 

Fernandes BS, Steiner J, Berk M, Molendijk ML, Gonzalez-Pinto A, Turck CW et al (2015) Peripheral brain-derived neurotrophic factor in schizophrenia and the role of antipsychotics: meta-analysis and implications. Mol Psychiatry 20(9):1108–1119. https://doi.org/10.1038/mp.2014.117

Article  PubMed  CAS  Google Scholar 

Fernández-Messina L, Gutiérrez-Vázquez C, Rivas-García E, Sánchez-Madrid F, de la Fuente H (2015) Immunomodulatory role of microRNAs transferred by extracellular vesicles. Biol Cell.;107(3):61–77. https://doi.org/10.1111/boc.201400081. Epub 2015 Feb 12. Erratum in: Biol Cell. 2015;107(7):249. doi: 10.1111/boc.201570200

Gao W, Liu H, Yuan J et al (2016) Exosomes derived from mature dendritic cells increase endothelial inflammation and atherosclerosis via membrane TNF-α mediated NF-κB pathway. J Cell Mol Med 20(12):2318–2327. https://doi.org/10.1111/jcmm.12923

Article 

Comments (0)

No login
gif