Martin, T. A., Ye, L., Sanders, A., et al. (2000). Cancer invasion and metastasis: Molecular and cellular perspective. Cancer Invasion and Metastasis: Molecular and Cellular Perspective, 1–7. Available: http://www.ncbi.nlm.nih.gov/books/NBK164700/
Guan, X. (2015). Cancer metastases: Challenges and opportunities. Acta Pharmaceutica Sinica B, 402–418. https://doi.org/10.1016/j.apsb.2015.07.005
Castaneda, M., den Hollander, P/, Kuburich, N. A., Rosen, J. M., Mani, S. A. (2022). Mechanisms of cancer metastasis. Seminars in Cancer Biology, 17–31. https://doi.org/10.1016/j.semcancer.2022.10.006
Gerstberger, S., Jiang, Q., & Ganesh, K. (2023). Metastasis. Cell, 186, 1564–1579. https://doi.org/10.1016/j.cell.2023.03.003
Article CAS PubMed PubMed Central Google Scholar
Goode, J. A., & Matson, M. B. (2004). Embolisation of cancer: What is the evidence? Cancer Imaging, 4, 133–141. https://doi.org/10.1102/1470-7330.2004.0021
Article CAS PubMed PubMed Central Google Scholar
Glazer, E. S., & Curley, S. A. (2011). The ongoing history of thermal therapy for cancer. Surgical Oncology Clinics of North America, 20, 229–235. https://doi.org/10.1016/j.soc.2010.11.001
Chu, K. F., Dupuy, D. E. (2014). Thermal ablation of tumours: Biological mechanisms and advances in therapy. Nature Reviews Cancer, 199–208. https://doi.org/10.1038/nrc3672
Sullivan, R., Alatise, O. I., Anderson, B. O., Audisio, R., Autier, P., Aggarwal, A., et al. (2015). Global cancer surgery: Delivering safe, affordable, and timely cancer surgery. The Lancet Oncology, 1193–1224. https://doi.org/10.1016/S1470-2045(15)00223-5
Wáng, Y. X. J., De Baere, T., Idée, J. M., Ballet, S. (2015). Transcatheter embolization therapy in liver cancer: An update of clinical evidences. Chinese Journal of Cancer Research, 96–121. https://doi.org/10.3978/j.issn.1000-9604.2015.03.03
Abshire, D., Lang, M. K. (2018). The evolution of radiation therapy in treating cancer. Seminars in Oncology Nursing, 151–157. https://doi.org/10.1016/j.soncn.2018.03.006
Bull, J. M.C. (2018). A review of immune therapy in cancer and a question: Can thermal therapy increase tumor response? International Journal of Hyperthermia. Taylor and Francis Ltd; 840–852. https://doi.org/10.1080/02656736.2017.1387938
Debela, D. T., Muzazu, S. G. Y., Heraro, K. D., Ndalama, M. T., Mesele, B. W., Haile, D. C., et al. (2021). New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Medicine, 205031212110343. https://doi.org/10.1177/20503121211034366
Pérez-López, A., Martín-Sabroso, C., Gómez-Lázaro, L., Torres-Suárez, A. I., Aparicio-Blanco, J. (2022). Embolization therapy with microspheres for the treatment of liver cancer: State-of-the-art of clinical translation. Acta Biomaterialia, 1–15. https://doi.org/10.1016/j.actbio.2022.07.019
Dai, Q., Cao, B., Zhao, S., & Zhang, A. (2022). Synergetic thermal therapy for cancer: State-of-the-art and the future. Bioengineering, 9, 474. https://doi.org/10.3390/bioengineering9090474
Article CAS PubMed PubMed Central Google Scholar
Li, Q., Lei, X., Zhu, J., Zhong, Y., Yang, J., Wang, J., et al. (2023). Radiotherapy/chemotherapy-immunotherapy for cancer management: From mechanisms to clinical implications. Tong Q, editor. Oxidative Medicine and Cellular Longevity, 1–9. https://doi.org/10.1155/2023/7530794
Are, C., Murthy, S. S., Sullivan, R., Schissel, M., Chowdhury, S., Alatise, O., et al. (2023). Global cancer surgery: Pragmatic solutions to improve cancer surgery outcomes worldwide. The Lancet Oncology, e472–e518. https://doi.org/10.1016/S1470-2045(23)00412-6
Mokhtari, R. B., Homayouni, T. S., Baluch, N., Morgatskaya, E., Kumar, S., Das, B., et al. (2017). Combination therapy in combating cancer. Oncotarget, 38022–38043. https://doi.org/10.18632/oncotarget.16723
Mortezae,e K., Parwaie, W., Motevaseli, E., Mirtavoos-Mahyari, H., Musa, A. E., Shabeeb, D., et al. (2019). Targets for improving tumor response to radiotherapy. International Immunopharmacology, 105847. https://doi.org/10.1016/j.intimp.2019.105847
Zandieh, M. A., Farahani, M. H., Daryab, M., Motahari, A., Gholami, S., Salmani, F., et al. (2023). Stimuli-responsive (nano)architectures for phytochemical delivery in cancer therapy. Biomedicine and Pharmacotherapy, 115283. https://doi.org/10.1016/j.biopha.2023.115283
Rajora, A. K., Ravishankar, D., Zhang, H., Rosenholm, J. M. (2020). Recent advances and impact of chemotherapeutic and antiangiogenic nanoformulations for combination cancer therapy. Pharmaceutics, 1–27. https://doi.org/10.3390/pharmaceutics12060592
Asadzadeh, Z., Safarzadeh, E., Safaei, S., Baradaran, A., Mohammadi, A., Hajiasgharzadeh, K., et al. (2020). Current approaches for combination therapy of cancer: The role of immunogenic cell death. Cancers (Basel)., 12, 1047. https://doi.org/10.3390/cancers12041047
Article CAS PubMed PubMed Central Google Scholar
Zhou, Z., Edil, B. H., & Li, M. (2023). Combination therapies for cancer: Challenges and opportunities. BMC Medicine, 21, 171. https://doi.org/10.1186/s12916-023-02852-4
Article PubMed PubMed Central Google Scholar
Minerva, Bhat, A., Verma, S., Chander, G., Jamwal, R., Sharma, B., et al. (2023). Cisplatin-based combination therapy for cancer. Journal of Cancer Research and Therapeutics, 530–536. https://doi.org/10.4103/jcrt.jcrt_792_22
Wisdom, A. J., Barker, C. A., Chang, J. Y., Demaria, S., Formenti, S., Grassberger, C., et al. (2024). The next chapter in immunotherapy and radiation combination therapy: Cancer-specific perspectives. International Journal of Radiation Oncology Biology Physics, 1404–1421. https://doi.org/10.1016/j.ijrobp.2023.12.046
Czarnota, G. J., Karshafian, R., Burns, P. N., Wong, S., Al Mahrouki, A., Lee, J. W., et al. (2012). Tumor radiation response enhancement by acoustical stimulation of the vasculature. Proc Natl Acad Sci U S A., 109, E2033–E2041. https://doi.org/10.1073/pnas.1200053109
Article PubMed PubMed Central Google Scholar
Eisenbrey, J. R., Shraim, R., Liu, J. B., Li, J., Stanczak, M., Oeffinger, B., et al. (2018). Sensitization of hypoxic tumors to radiation therapy using ultrasound-sensitive oxygen microbubbles. International Journal of Radiation Oncology*Biology*Physics, 101, 88–96. https://doi.org/10.1016/j.ijrobp.2018.01.042
Snipstad, S., Vikedal, K., Maardalen, M., Kurbatskaya, A., Sulheim, E., Davies, C. de. L. (2021). Ultrasound and microbubbles to beat barriers in tumors: Improving delivery of nanomedicine. Advanced Drug Delivery Reviews, 113847. https://doi.org/10.1016/j.addr.2021.113847
Xia, H., Yang, D., He, W., Zhu, X., Yan, Y., Liu, Z., et al. (2021). Ultrasound-mediated microbubbles cavitation enhanced chemotherapy of advanced prostate cancer by increasing the permeability of blood-prostate barrier. Translational Oncology, 14, 101177. https://doi.org/10.1016/j.tranon.2021.101177
Article CAS PubMed PubMed Central Google Scholar
Zhou, B., Lian, Q., Jin, C., Lu, J., Xu, L., Gong, X., et al. (2022). Human clinical trial using diagnostic ultrasound and microbubbles to enhance neoadjuvant chemotherapy in HER2-negative breast cancer. Frontiers in Oncology. 12. https://doi.org/10.3389/fonc.2022.992774
Padilla, F., Brenner, J., Prada, F., Klibanov, A. L. (2023). Theranostics in the vasculature: bioeffects of ultrasound and microbubbles to induce vascular shutdown. Theranostics, 4079–4101. https://doi.org/10.7150/thno.70372
Sirsi, S., & Borden, M. (2009). Microbubble compositions, properties and biomedical applications. Bubble Science, Engineering & Technology, 1, 3–17. https://doi.org/10.1179/175889709X446507
Jangjou, A., Meisami, A. H., Jamali, K., Niakan, M. H., Abbasi, M., Shafiee, M., et al. (2021). The promising shadow of microbubble over medical sciences: From fighting wide scope of prevalence disease to cancer eradication. Journal of Biomedical Science, 28, 49. https://doi.org/10.1186/s12929-021-00744-4
Article PubMed PubMed Central Google Scholar
Lee, H., Kim, H., Han, H., Lee, M., Lee, S., Yoo, H., et al. (2017). Microbubbles used for contrast enhanced ultrasound and theragnosis: A review of principles to applications. Biomedical Engineering Letters, 7, 59–69. https://doi.org/10.1007/s13534-017-0016-5
Article PubMed PubMed Central Google Scholar
Ibsen, S., Schutt, C. E., Esener, S. (2013). Microbubble-mediated ultrasound therapy: A review of its potential in cancer treatment. Drug Design, Development and Therapy, 375–388. https://doi.org/10.2147/DDDT.S31564
Fournier, L., de La Taille, T., Chauvierre, C. (2023). Microbubbles for human diagnosis and therapy. Biomaterials, 122025. https://doi.org/10.1016/j.biomaterials.2023.122025
Martin, K. H., & Dayton, P. A. (2013). Current status and prospects for microbubbles in ultrasound theranostics. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 5, 329–345. https://doi.org/10.1002/wnan.1219
Article CAS PubMed Google Scholar
Stride, E. P., & Coussios, C. C. (2010). Cavitation and contrast: The use of bubbles in ultrasound imaging and therapy. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 224, 171–191. https://doi.org/10.1243/09544119JEIM622
Article CAS PubMed Google Scholar
Fan, Z., Kumon, R. E., & Deng, C. X. (2014). Mechanisms of microbubble-facilitated sonoporation for drug and gene delivery. Therapeutic Delivery, 5, 467–486. https://doi.org/10.4155/tde.14.10
Article CAS PubMed Google Scholar
Wang, M., Zhang, Y., Cai, C., Tu, J., Guo, X., & Zhang, D. (2018). Sonoporation-induced cell membrane permeabilization and cytoskeleton disassembly at varied acoustic and microbubble-cell parameters. Science and Reports, 8, 3885. https://doi.org/10.1038/s41598-018-22056-8
Li, Y., Chen, Z., Ge, S. (2021). Sonoporation: Underlying mechanisms and applications in cellular regulation. BIO Integration, 29–36. https://doi.org/10.15212/bioi-2020-0028
Chowdhury, S. M., Abou-Elkacem, L., Lee, T., Dahl, J., Lutz, A. M. (2020). Ultrasound and microbubble mediated therapeutic delivery: Underlying mechanisms and future outlook. Journal of Controlled Release, 75–90. https://doi.org/10.1016/j.jconrel.2020.06.008
Sharma, D., Xuan Leong, K., Palhares, D., Czarnota, G. J. (2023). Radiation combined with ultrasound and microbubbles: A potential novel strategy for cancer treatment. Zeitschrift fur Medizinische Physik, 407–426. https://doi.org/10.1016/j.zemedi.2023.04.007
Al-Mahrouki, A. A., Karshafian, R., Giles, A., & Czarnota, G. J. (2012). Bioeffects of ultrasound-stimulated microbubbles on endothelial cells: Gene expression changes associated with radiation enhancement in vitro. Ultrasound in Medicine and Biology, 38, 1958–1969. https://doi.org/10.1016/j.ultrasmedbio.2012.07.009
Al-Mahrouki, A. A., Wong, E., & Czarnota, G. J. (2015). Ultrasound-stimulated microbubble enhancement of radiation treatments: Endothelial cell function and mechanism. Oncoscience, 2, 944–957. https://doi.org/10.18632/oncoscience.277
Article PubMed PubMed Central Google Scholar
Al-Mahrouki, A., Giles, A., Hashim, A., Kim, H. C., El-Falou, A., Rowe-Magnus, D., et al. (2017). Microbubble-based enhancement of radiation effect: Role of cell membrane ceramide metabolism. Ulasov I, editor. PLoS One, 12, e0181951. https://doi.org/10.1371/journal.pone.0181951
Article CAS PubMed PubMed Central Google Scholar
Tarapacki, C., Lai, P., Tran, W. T., El Kaffas, A., Lee, J., Hupple, C., et al. (2016). Breast tumor response to ultrasound mediated excitation of microbubbles and radiation therapy in vivo. Oncoscience, 3, 98–108. https://doi.org/10.18632/oncoscience.336
Comments (0)