Sung, H., Ferlay, J., Siegel, R. L., et al. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J/OL]. A Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660
Wiechmann, L., Sampson, M., Stempel, M., et al. (2009). Presenting features of breast cancer differ by molecular subtype[J/OL]. Annals of Surgical Oncology, 16(10), 2705–2710. https://doi.org/10.1245/s10434-009-0606-2
Arundhathi, J. R. D., Mathur, S. R., Gogia, A., et al. (2021). Metabolic changes in triple negative breast cancer-focus on aerobic glycolysis[J/OL]. Molecular Biology Reports, 48(5), 4733–4745. https://doi.org/10.1007/s11033-021-06414-w
McDonald, E. S., Clark, A. S., Tchou, J., et al. (2016). Clinical diagnosis and management of breast cancer[J/OL]. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 57(Suppl 1), 9S-16S. https://doi.org/10.2967/jnumed.115.157834
AG W, EP W. Breast cancer treatment[J/OL]. JAMA, 2019, 321(3)[2024–08–29]. https://pubmed.ncbi.nlm.nih.gov/30667503/. https://doi.org/10.1001/jama.2018.20751.
WARBURG O. On the Origin of Cancer Cells[J]. 1956, 123.
Cheung, S. M., Husain, E., Masannat, Y., et al. (2020). Lactate concentration in breast cancer using advanced magnetic resonance spectroscopy[J/OL]. British Journal of Cancer, 123(2), 261–267. https://doi.org/10.1038/s41416-020-0886-7
Article PubMed PubMed Central Google Scholar
Calvaresi, E. C., Grachi, C., Tuccinardi, T., et al. (2013). Dual targeting of the Warburg effect with a glucose-conjugated lactate dehydrogenase inhibitor[J/OL]. A European Journal of Chemical Biology, 14(17), 2263–2267. https://doi.org/10.1002/cbic.201300562
Le, A., Cooper, C. R., Gouw, A. M., et al. (2010). Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression[J/OL]. Proceedings of the National Academy of Sciences of the United States of America, 107(5), 2037–2042. https://doi.org/10.1073/pnas.0914433107
Article PubMed PubMed Central Google Scholar
Guan, X., Rodriguez-Cruz, V., & Morris, M. E. (2019). Cellular Uptake of MCT1 inhibitors AR-C155858 and AZD3965 and their effects on mct-mediated transport of L-lactate in murine 4T1 breast tumor cancer cells[J/OL]. The AAPS journal, 21(2), 13. https://doi.org/10.1208/s12248-018-0279-5
Huang, T., Feng, Q., Wang, Z., et al. (2021). Tumor-targeted inhibition of monocarboxylate transporter 1 improves T-cell immunotherapy of solid tumors[J/OL]. Advanced Healthcare Materials, 10(4), e2000549. https://doi.org/10.1002/adhm.202000549
Sun, L., Lin, C., Li, X., et al. (2018). Comparative phospho- and acetyl proteomics analysis of posttranslational modifications regulating intestine regeneration in sea cucumbers[J/OL]. Frontiers in Physiology, 9, 836. https://doi.org/10.3389/fphys.2018.00836
Article PubMed PubMed Central Google Scholar
RAMAZI S, ZAHIRI J. Posttranslational modifications in proteins: resources, tools and prediction methods[J/OL]. Database: The Journal of Biological Databases and Curation, 2021, 2021: baab012. https://doi.org/10.1093/database/baab012.
Zhang, D., Tang, Z., Huang, H., et al. (2019). Metabolic regulation of gene expression by histone lactylation[J/OL]. Nature, 574(7779), 575–580. https://doi.org/10.1038/s41586-019-1678-1
Article PubMed PubMed Central Google Scholar
Arnaudo, A. M., & Garcia, B. A. (2013). Proteomic characterization of novel histone post-translational modifications[J/OL]. Epigenetics & Chromatin, 6(1), 24. https://doi.org/10.1186/1756-8935-6-24
Warburg, O., Wind, F., & Negelein, E. (1927). The metabolism of tumors in the body[J/OL]. The Journal of General Physiology, 8(6), 519–530. https://doi.org/10.1085/jgp.8.6.519
Article PubMed PubMed Central Google Scholar
Tu, V. Y., Ayari, A., & O’Connor, R. S. (2021). Beyond the lactate paradox: How lactate and acidity impact T cell Therapies against Cancer[J/OL]. Antibodies (Basel, Switzerland), 10(3), 25. https://doi.org/10.3390/antib10030025
Understanding the Warburg effect: The metabolic requirements of cell proliferation - PubMed[EB/OL]. [2024–03–09]. https://pubmed.ncbi.nlm.nih.gov/19460998/.
Lee, T. Y. (2021). Lactate: A multifunctional signaling molecule[J/OL]. Yeungnam University Journal of Medicine, 38(3), 183–193. https://doi.org/10.12701/yujm.2020.00892
Article PubMed PubMed Central Google Scholar
Semenza, G. L. (2009). HIF-1 inhibitors for cancer therapy: From gene expression to drug discovery[J/OL]. Current Pharmaceutical Design, 15(33), 3839–3843. https://doi.org/10.2174/138161209789649402
Brown, T. P., & Ganapathy, V. (2020). Lactate/GPR81 signaling and proton motive force in cancer: Role in angiogenesis, immune escape, nutrition, and Warburg phenomenon[J/OL]. Pharmacology & Therapeutics, 206, 107451. https://doi.org/10.1016/j.pharmthera.2019.107451
You, L., Wu, W., Wang, X., et al. (2021). The role of hypoxia-inducible factor 1 in tumor immune evasion[J/OL]. Medicinal Research Reviews, 41(3), 1622–1643. https://doi.org/10.1002/med.21771
Mu, X., Shi, W., Xu, Y., et al. (2018). Tumor-derived lactate induces M2 macrophage polarization via the activation of the ERK/STAT3 signaling pathway in breast cancer[J/OL]. Cell Cycle, 17(4), 428–438. https://doi.org/10.1080/15384101.2018.1444305
Article PubMed PubMed Central Google Scholar
Brown, T. P., Bhattacharjee, P., Ramachandran, S., et al. (2020). The lactate receptor GPR81 promotes breast cancer growth via a paracrine mechanism involving antigen-presenting cells in the tumor microenvironment[J/OL]. Oncogene, 39(16), 3292–3304. https://doi.org/10.1038/s41388-020-1216-5
Sun, K., Tang, S., Hou, Y., et al. (2019). Oxidized ATM-mediated glycolysis enhancement in breast cancer-associated fibroblasts contributes to tumor invasion through lactate as metabolic coupling[J/OL]. eBioMedicine, 41, 370–383. https://doi.org/10.1016/j.ebiom.2019.02.025
Article PubMed PubMed Central Google Scholar
BONUCCELLI G, TSIRIGOS A, WHITAKER-MENEZES D, et al. Ketones and lactate “fuel” tumor growth and metastasis: Evidence that epithelial cancer cells use oxidative mitochondrial metabolism[J/OL]. Cell Cycle (Georgetown, Tex.), 2010, 9(17): 3506–3514. https://doi.org/10.4161/cc.9.17.12731.
Zhang, Y., Zhai, Z., Duan, J., et al. (2022). Lactate: The mediator of metabolism and immunosuppression[J/OL]. Frontiers in Endocrinology, 13, 901495. https://doi.org/10.3389/fendo.2022.901495
Article PubMed PubMed Central Google Scholar
Arora, S., Joshi, G., Chaturvedi, A., et al. (2022). A perspective on medicinal chemistry approaches for targeting pyruvate kinase M2[J/OL]. Journal of Medicinal Chemistry, 65(2), 1171–1205. https://doi.org/10.1021/acs.jmedchem.1c00981
Allosteric regulation of PKM2 allows cellular adaptation to different physiological states - PubMed[EB/OL]. [2025–01–12]. https://pubmed.ncbi.nlm.nih.gov/23423437/.
SUN L, SUO C, LI S T, et al. Metabolic reprogramming for cancer cells and their microenvironment: Beyond the Warburg effect[J/OL]. Biochimica Et Biophysica Acta. Reviews on Cancer, 2018, 1870(1): 51–66. https://doi.org/10.1016/j.bbcan.2018.06.005.
Dai, Z., Ramesh, V., & Locasale, J. W. (2020). The evolving metabolic landscape of chromatin biology and epigenetics[J/OL]. Nature Reviews. Genetics, 21(12), 737–753. https://doi.org/10.1038/s41576-020-0270-8
Article PubMed PubMed Central Google Scholar
FAUBERT B, SOLMONSON A, DEBERARDINIS R J. Metabolic reprogramming and cancer progression[J/OL]. Science (New York, N.Y.), 2020, 368(6487): eaaw5473. https://doi.org/10.1126/science.aaw5473.
Shima, T., Taniguchi, K., Tokumaru, Y., et al. (2022). Glucose transporter-1 inhibition overcomes imatinib resistance in gastrointestinal stromal tumor cells[J/OL]. Oncology Reports, 47(1), 7. https://doi.org/10.3892/or.2021.8218
Glucose Metabolism and Glucose Transporters in Breast Cancer - PubMed[EB/OL]. [2024–03–10]. https://pubmed.ncbi.nlm.nih.gov/34552932/.
TILEKAR K, UPADHYAY N, IANCU C V, et al. Power of two: Combination of therapeutic approaches involving glucose transporter (GLUT) inhibitors to combat cancer[J/OL]. Biochimica Et Biophysica Acta. Reviews on Cancer, 2020, 1874(2): 188457. https://doi.org/10.1016/j.bbcan.2020.188457.
Metabolic genes in cancer: Their roles in tumor progression and clinical implications - PubMed[EB/OL]. [2024–03–10]. https://pubmed.ncbi.nlm.nih.gov/20122995/.
BROWN R S, WAHL R L. Overexpression of Glut-1 glucose transporter in human breast cancer. An immunohistochemical study[J/OL]. Cancer, 1993, 72(10): 2979–2985. https://doi.org/10.1002/1097-0142(19931115)72:10<2979::aid-cncr2820721020>3.0.co;2-x.
Littleflower, A. B., Antony, G. R., Parambil, S. T., et al. (2023). Metabolic phenotype intricacies on altered glucose metabolism of breast cancer cells upon Glut-1 inhibition and mimic hypoxia in vitro[J/OL]. Applied Biochemistry and Biotechnology, 195(10), 5838–5854. https://doi.org/10.1007/s12010-023-04373-5
Lactate Dehydrogenase-A (LDH-A) Preserves cancer stemness and recruitment of tumor-associated macrophages to promote breast cancer progression - PubMed[EB/OL]. [2024–03–10]. https://pubmed.ncbi.nlm.nih.gov/34178639/.
Zhao, Y. H., Zhou, M., Liu, H., et al. (2009). Upregulation of lactate dehydrogenase A by ErbB2 through heat shock factor 1 promotes breast cancer cell glycolysis and growth[J/OL]. Oncogene, 28(42), 3689–3701. https://doi.org/10.1038/onc.2009.229
Comments (0)