Zhao, Y., Shen, M., Wu, L., Yang, H., Yao, Y., Yang, Q., Du, J., Liu, L., Li, Y., & Bai, Y. (2023). Stromal cells in the tumor microenvironment: Accomplices of tumor progression? Cell Death & Disease, 14, 587. https://doi.org/10.1038/s41419-023-06110-6
Kilian, O., Dahse, R., Alt, V., Zardi, L., Rosenhahn, J., Exner, U., Battmann, A., Schnettler, R., & Kosmehl, H. (2004). Expression of EDA+ and EDB+ fibronectin splice variants in bone. Bone, 35, 1334–1345. https://doi.org/10.1016/j.bone.2004.08.008
Miles, F. L., & Sikes, R. A. (2014). Insidious changes in stromal matrix fuel cancer progression. Molecular Cancer Research, 12, 297–312. https://doi.org/10.1158/1541-7786.MCR-13-0535
Kaspar, M., Zardi, L., & Neri, D. (2006). Fibronectin as target for tumor therapy. International Journal of Cancer, 118, 1331–1339. https://doi.org/10.1002/ijc.21677
Robl, B., Botter, S. M., Boro, A., Meier, D., Neri, D., & Fuchs, B. (2017). Evaluation of F8-TNF-α in models of early and progressive metastatic osteosarcoma. Translational Oncology, 10, 419–430. https://doi.org/10.1016/j.tranon.2017.02.005
Article PubMed PubMed Central Google Scholar
Lamoureux, F., Richard, P., Wittrant, Y., Battaglia, S., Pilet, P., Trichet, V., Blanchard, F., Gouin, F., Pitard, B., Heymann, D., et al. (2007). Therapeutic relevance of osteoprotegerin gene therapy in osteosarcoma: Blockade of the vicious cycle between tumor cell proliferation and bone resorption. Cancer Research, 67, 7308–7318. https://doi.org/10.1158/0008-5472.CAN-06-4130
Nørregaard, K. S., Jürgensen, H. J., Gårdsvoll, H., Engelholm, L. H., Behrendt, N., & Søe, K. (2021). Osteosarcoma and metastasis associated bone degradation—A tale of osteoclast and malignant cell cooperativity. International Journal of Molecular Sciences, 22, 6865. https://doi.org/10.3390/ijms22136865
Article PubMed PubMed Central Google Scholar
Piperno-Neumann, S., Le Deley, M.-C., Rédini, F., Pacquement, H., Marec-Bérard, P., Petit, P., Brisse, H., Lervat, C., Gentet, J.-C., Entz-Werlé, N., et al. (2016). Zoledronate in combination with chemotherapy and surgery to treat osteosarcoma (OS2006): A randomised, multicentre, open-label, phase 3 trial. The lancet Oncology, 17, 1070–1080. https://doi.org/10.1016/S1470-2045(16)30096-1
Le Nail, L.-R., Brennan, M., Rosset, P., Deschaseaux, F., Piloquet, P., Pichon, O., Le Caignec, C., Crenn, V., Layrolle, P., Hérault, O., et al. (2018). Comparison of tumor- and bone marrow-derived mesenchymal stromal/stem cells from patients with high-grade osteosarcoma. International Journal of Molecular Sciences, 19, 707. https://doi.org/10.3390/ijms19030707
Article PubMed PubMed Central Google Scholar
Tsukamoto, S., Honoki, K., Fujii, H., Tohma, Y., Kido, A., Mori, T., Tsujiuchi, T., & Tanaka, Y. (2012). Mesenchymal stem cells promote tumor engraftment and metastatic colonization in rat osteosarcoma model. International Journal of Oncology, 40, 163–169. https://doi.org/10.3892/ijo.2011.1220
Qi, J., Zhou, Y., Jiao, Z., Wang, X., Zhao, Y., Li, Y., Chen, H., Yang, L., Zhu, H., & Li, Y. (2017). Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth through hedgehog signaling pathway. Cellular Physiology and Biochemistry, 42, 2242–2254. https://doi.org/10.1159/000479998
Qi, J., Zhang, R., & Wang, Y. (2021). Exosomal miR-21-5p derived from bone marrow mesenchymal stem cells promote osteosarcoma cell proliferation and invasion by targeting PIK3R1. Journal of Cellular and Molecular Medicine, 25, 11016–11030. https://doi.org/10.1111/jcmm.17024
Article PubMed PubMed Central Google Scholar
Wang, Y., Chu, Y., Li, K., Zhang, G., Guo, Z., Wu, X., Qiu, C., Li, Y., Wan, X., Sui, J., et al. (2020). Exosomes secreted by adipose-derived mesenchymal stem cells foster metastasis and osteosarcoma proliferation by increasing COLGALT2 expression. Frontiers in Cell and Developmental Biology, 8, 353. https://doi.org/10.3389/fcell.2020.00353
Article PubMed PubMed Central Google Scholar
Vallabhaneni, K. C., Penfornis, P., Dhule, S., Guillonneau, F., Adams, K. V., Mo, Y. Y., Xu, R., Liu, Y., Watabe, K., Vemuri, M. C., et al. (2014). Extracellular vesicles from bone marrow mesenchymal stem/stromal cells transport tumor regulatory microRNA, proteins, and metabolites. Oncotarget, 6, 4953–4967.
Article PubMed Central Google Scholar
Fontanella, R., Pelagalli, A., Nardelli, A., D’Alterio, C., Ieranò, C., Cerchia, L., Lucarelli, E., Scala, S., & Zannetti, A. (2016). A novel antagonist of CXCR4 prevents bone marrow-derived mesenchymal stem cell-mediated osteosarcoma and hepatocellular carcinoma cell migration and invasion. Cancer Letters, 370, 100–107. https://doi.org/10.1016/j.canlet.2015.10.018
Tu, B., Du, L., Fan, Q.-M., Tang, Z., & Tang, T.-T. (2012). STAT3 activation by IL-6 from mesenchymal stem cells promotes the proliferation and metastasis of osteosarcoma. Cancer Letters, 325, 80–88. https://doi.org/10.1016/j.canlet.2012.06.006
Wang, Y., Chu, Y., Yue, B., Ma, X., Zhang, G., Xiang, H., Liu, Y., Wang, T., Wu, X., & Chen, B. (2017). Adipose-derived mesenchymal stem cells promote osteosarcoma proliferation and metastasis by activating the STAT3 pathway. Oncotarget, 8, 23803–23816. https://doi.org/10.18632/oncotarget.15866
Article PubMed PubMed Central Google Scholar
Kido, A., Yoshitani, K., Shimizu, T., Akahane, M., Fujii, H., Tsukamoto, S., Kondo, Y., Honoki, K., Imano, M., & Tanaka, Y. (2012). Effect of mesenchymal stem cells on hypoxia-induced desensitization of Β2-adrenergic receptors in rat osteosarcoma cells. Oncology Letters, 4, 745–750. https://doi.org/10.3892/ol.2012.813
Article PubMed PubMed Central Google Scholar
Du, L., Han, X., Tu, B., Wang, M., Qiao, H., Zhang, S., Fan, Q., & Tang, T. (2018). CXCR1/Akt signaling activation induced by mesenchymal stem cell-derived IL-8 promotes osteosarcoma cell anoikis resistance and pulmonary metastasis. Cell Death & Disease, 9, 714. https://doi.org/10.1038/s41419-018-0745-0
Bonuccelli, G., Avnet, S., Grisendi, G., Salerno, M., Granchi, D., Dominici, M., Kusuzaki, K., & Baldini, N. (2014). Role of mesenchymal stem cells in osteosarcoma and metabolic reprogramming of tumor cells. Oncotarget, 5, 7575–7588.
Article PubMed PubMed Central Google Scholar
Johann, P.-D., Vaegler, M., Gieseke, F., Mang, P., Armeanu-Ebinger, S., Kluba, T., Handgretinger, R., & Müller, I. (2010). Tumour stromal cells derived from paediatric malignancies display MSC-like properties and impair NK cell cytotoxicity. BMC Cancer, 10, 501. https://doi.org/10.1186/1471-2407-10-501
Article PubMed PubMed Central Google Scholar
Feng, H., Zhang, Q., Zhao, Y., Zhao, L., & Shan, B. (2020). Leptin acts on mesenchymal stem cells to promote chemoresistance in osteosarcoma cells. Aging (Albany NY), 12, 6340–6351. https://doi.org/10.18632/aging.103027
Feng, H., Guo, P., Wang, J., Xu, J., Xie, C., & Gao, F. (2016). Expression of leptin and sirtuin-1 is associated with poor prognosis in patients with osteosarcoma. Pathology - Research and Practice, 212, 319–324. https://doi.org/10.1016/j.prp.2016.02.002
Xu, Y., Li, Y., Chen, X., Xiang, F., Deng, Y., Li, Z., & Wei, D. (2021). TGF-β protects osteosarcoma cells from chemotherapeutic cytotoxicity in a SDH/HIF1α dependent manner. BMC Cancer, 21, 1200. https://doi.org/10.1186/s12885-021-08954-7
Article PubMed PubMed Central Google Scholar
Zhou, L., Tang, J., Hu, F., Liao, Y., Li, R., Zhou, Y., Yao, Z., Geng, Z., Yang, Z., Zhang, X., et al. (2020). Effects of different levels of TGF-β expression and tumor cell necrosis rates in osteosarcoma on the chemotherapy resistance of osteosarcoma. Journal of Bone Oncology, 23, 100299. https://doi.org/10.1016/j.jbo.2020.100299
Article PubMed PubMed Central Google Scholar
Pietrovito, L., Leo, A., Gori, V., Lulli, M., Parri, M., Becherucci, V., Piccini, L., Bambi, F., Taddei, M. L., & Chiarugi, P. (2018). Bone marrow-derived mesenchymal stem cells promote invasiveness and transendothelial migration of osteosarcoma cells via a mesenchymal to amoeboid transition. Molecular Oncology, 12, 659–676. https://doi.org/10.1002/1878-0261.12189
Article PubMed PubMed Central Google Scholar
Kawano, M., Tanaka, K., Itonaga, I., Iwasaki, T., Tsumura, H. (2018). Interaction between human osteosarcoma and mesenchymal stem cells via an interleukin-8 signaling loop in the tumor microenvironment. Cell Communication and Signaling, 16. https://doi.org/10.1186/s12964-018-0225-2.
Cortini, M., Massa, A., Avnet, S., Bonuccelli, G., & Baldini, N. (2016). Tumor-activated mesenchymal stromal cells promote osteosarcoma stemness and migratory potential via IL-6 secretion. PLoS ONE, 11, e0166500. https://doi.org/10.1371/journal.pone.0166500
Article PubMed PubMed Central Google Scholar
Tu, B., Peng, Z.-X., Fan, Q.-M., Du, L., Yan, W., & Tang, T.-T. (2014). Osteosarcoma cells promote the production of pro-tumor cytokines in mesenchymal stem cells by inhibiting their osteogenic differentiation through the TGF-β/Smad2/3 pathway. Experimental Cell Research, 320, 164–173. https://doi.org/10.1016/j.yexcr.2013.10.013
Comments (0)