Microenvironment matters: insights from the FOSTER consortium on microenvironment-driven approaches to osteosarcoma therapy

Zhao, Y., Shen, M., Wu, L., Yang, H., Yao, Y., Yang, Q., Du, J., Liu, L., Li, Y., & Bai, Y. (2023). Stromal cells in the tumor microenvironment: Accomplices of tumor progression? Cell Death & Disease, 14, 587. https://doi.org/10.1038/s41419-023-06110-6

Article  Google Scholar 

Kilian, O., Dahse, R., Alt, V., Zardi, L., Rosenhahn, J., Exner, U., Battmann, A., Schnettler, R., & Kosmehl, H. (2004). Expression of EDA+ and EDB+ fibronectin splice variants in bone. Bone, 35, 1334–1345. https://doi.org/10.1016/j.bone.2004.08.008

Article  PubMed  Google Scholar 

Miles, F. L., & Sikes, R. A. (2014). Insidious changes in stromal matrix fuel cancer progression. Molecular Cancer Research, 12, 297–312. https://doi.org/10.1158/1541-7786.MCR-13-0535

Article  PubMed  Google Scholar 

Kaspar, M., Zardi, L., & Neri, D. (2006). Fibronectin as target for tumor therapy. International Journal of Cancer, 118, 1331–1339. https://doi.org/10.1002/ijc.21677

Article  PubMed  Google Scholar 

Robl, B., Botter, S. M., Boro, A., Meier, D., Neri, D., & Fuchs, B. (2017). Evaluation of F8-TNF-α in models of early and progressive metastatic osteosarcoma. Translational Oncology, 10, 419–430. https://doi.org/10.1016/j.tranon.2017.02.005

Article  PubMed  PubMed Central  Google Scholar 

Lamoureux, F., Richard, P., Wittrant, Y., Battaglia, S., Pilet, P., Trichet, V., Blanchard, F., Gouin, F., Pitard, B., Heymann, D., et al. (2007). Therapeutic relevance of osteoprotegerin gene therapy in osteosarcoma: Blockade of the vicious cycle between tumor cell proliferation and bone resorption. Cancer Research, 67, 7308–7318. https://doi.org/10.1158/0008-5472.CAN-06-4130

Article  PubMed  Google Scholar 

Nørregaard, K. S., Jürgensen, H. J., Gårdsvoll, H., Engelholm, L. H., Behrendt, N., & Søe, K. (2021). Osteosarcoma and metastasis associated bone degradation—A tale of osteoclast and malignant cell cooperativity. International Journal of Molecular Sciences, 22, 6865. https://doi.org/10.3390/ijms22136865

Article  PubMed  PubMed Central  Google Scholar 

Piperno-Neumann, S., Le Deley, M.-C., Rédini, F., Pacquement, H., Marec-Bérard, P., Petit, P., Brisse, H., Lervat, C., Gentet, J.-C., Entz-Werlé, N., et al. (2016). Zoledronate in combination with chemotherapy and surgery to treat osteosarcoma (OS2006): A randomised, multicentre, open-label, phase 3 trial. The lancet Oncology, 17, 1070–1080. https://doi.org/10.1016/S1470-2045(16)30096-1

Article  PubMed  Google Scholar 

Le Nail, L.-R., Brennan, M., Rosset, P., Deschaseaux, F., Piloquet, P., Pichon, O., Le Caignec, C., Crenn, V., Layrolle, P., Hérault, O., et al. (2018). Comparison of tumor- and bone marrow-derived mesenchymal stromal/stem cells from patients with high-grade osteosarcoma. International Journal of Molecular Sciences, 19, 707. https://doi.org/10.3390/ijms19030707

Article  PubMed  PubMed Central  Google Scholar 

Tsukamoto, S., Honoki, K., Fujii, H., Tohma, Y., Kido, A., Mori, T., Tsujiuchi, T., & Tanaka, Y. (2012). Mesenchymal stem cells promote tumor engraftment and metastatic colonization in rat osteosarcoma model. International Journal of Oncology, 40, 163–169. https://doi.org/10.3892/ijo.2011.1220

Article  PubMed  Google Scholar 

Qi, J., Zhou, Y., Jiao, Z., Wang, X., Zhao, Y., Li, Y., Chen, H., Yang, L., Zhu, H., & Li, Y. (2017). Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth through hedgehog signaling pathway. Cellular Physiology and Biochemistry, 42, 2242–2254. https://doi.org/10.1159/000479998

Article  PubMed  Google Scholar 

Qi, J., Zhang, R., & Wang, Y. (2021). Exosomal miR-21-5p derived from bone marrow mesenchymal stem cells promote osteosarcoma cell proliferation and invasion by targeting PIK3R1. Journal of Cellular and Molecular Medicine, 25, 11016–11030. https://doi.org/10.1111/jcmm.17024

Article  PubMed  PubMed Central  Google Scholar 

Wang, Y., Chu, Y., Li, K., Zhang, G., Guo, Z., Wu, X., Qiu, C., Li, Y., Wan, X., Sui, J., et al. (2020). Exosomes secreted by adipose-derived mesenchymal stem cells foster metastasis and osteosarcoma proliferation by increasing COLGALT2 expression. Frontiers in Cell and Developmental Biology, 8, 353. https://doi.org/10.3389/fcell.2020.00353

Article  PubMed  PubMed Central  Google Scholar 

Vallabhaneni, K. C., Penfornis, P., Dhule, S., Guillonneau, F., Adams, K. V., Mo, Y. Y., Xu, R., Liu, Y., Watabe, K., Vemuri, M. C., et al. (2014). Extracellular vesicles from bone marrow mesenchymal stem/stromal cells transport tumor regulatory microRNA, proteins, and metabolites. Oncotarget, 6, 4953–4967.

Article  PubMed Central  Google Scholar 

Fontanella, R., Pelagalli, A., Nardelli, A., D’Alterio, C., Ieranò, C., Cerchia, L., Lucarelli, E., Scala, S., & Zannetti, A. (2016). A novel antagonist of CXCR4 prevents bone marrow-derived mesenchymal stem cell-mediated osteosarcoma and hepatocellular carcinoma cell migration and invasion. Cancer Letters, 370, 100–107. https://doi.org/10.1016/j.canlet.2015.10.018

Article  PubMed  Google Scholar 

Tu, B., Du, L., Fan, Q.-M., Tang, Z., & Tang, T.-T. (2012). STAT3 activation by IL-6 from mesenchymal stem cells promotes the proliferation and metastasis of osteosarcoma. Cancer Letters, 325, 80–88. https://doi.org/10.1016/j.canlet.2012.06.006

Article  PubMed  Google Scholar 

Wang, Y., Chu, Y., Yue, B., Ma, X., Zhang, G., Xiang, H., Liu, Y., Wang, T., Wu, X., & Chen, B. (2017). Adipose-derived mesenchymal stem cells promote osteosarcoma proliferation and metastasis by activating the STAT3 pathway. Oncotarget, 8, 23803–23816. https://doi.org/10.18632/oncotarget.15866

Article  PubMed  PubMed Central  Google Scholar 

Kido, A., Yoshitani, K., Shimizu, T., Akahane, M., Fujii, H., Tsukamoto, S., Kondo, Y., Honoki, K., Imano, M., & Tanaka, Y. (2012). Effect of mesenchymal stem cells on hypoxia-induced desensitization of Β2-adrenergic receptors in rat osteosarcoma cells. Oncology Letters, 4, 745–750. https://doi.org/10.3892/ol.2012.813

Article  PubMed  PubMed Central  Google Scholar 

Du, L., Han, X., Tu, B., Wang, M., Qiao, H., Zhang, S., Fan, Q., & Tang, T. (2018). CXCR1/Akt signaling activation induced by mesenchymal stem cell-derived IL-8 promotes osteosarcoma cell anoikis resistance and pulmonary metastasis. Cell Death & Disease, 9, 714. https://doi.org/10.1038/s41419-018-0745-0

Article  Google Scholar 

Bonuccelli, G., Avnet, S., Grisendi, G., Salerno, M., Granchi, D., Dominici, M., Kusuzaki, K., & Baldini, N. (2014). Role of mesenchymal stem cells in osteosarcoma and metabolic reprogramming of tumor cells. Oncotarget, 5, 7575–7588.

Article  PubMed  PubMed Central  Google Scholar 

Johann, P.-D., Vaegler, M., Gieseke, F., Mang, P., Armeanu-Ebinger, S., Kluba, T., Handgretinger, R., & Müller, I. (2010). Tumour stromal cells derived from paediatric malignancies display MSC-like properties and impair NK cell cytotoxicity. BMC Cancer, 10, 501. https://doi.org/10.1186/1471-2407-10-501

Article  PubMed  PubMed Central  Google Scholar 

Feng, H., Zhang, Q., Zhao, Y., Zhao, L., & Shan, B. (2020). Leptin acts on mesenchymal stem cells to promote chemoresistance in osteosarcoma cells. Aging (Albany NY), 12, 6340–6351. https://doi.org/10.18632/aging.103027

Article  PubMed  Google Scholar 

Feng, H., Guo, P., Wang, J., Xu, J., Xie, C., & Gao, F. (2016). Expression of leptin and sirtuin-1 is associated with poor prognosis in patients with osteosarcoma. Pathology - Research and Practice, 212, 319–324. https://doi.org/10.1016/j.prp.2016.02.002

Article  PubMed  Google Scholar 

Xu, Y., Li, Y., Chen, X., Xiang, F., Deng, Y., Li, Z., & Wei, D. (2021). TGF-β protects osteosarcoma cells from chemotherapeutic cytotoxicity in a SDH/HIF1α dependent manner. BMC Cancer, 21, 1200. https://doi.org/10.1186/s12885-021-08954-7

Article  PubMed  PubMed Central  Google Scholar 

Zhou, L., Tang, J., Hu, F., Liao, Y., Li, R., Zhou, Y., Yao, Z., Geng, Z., Yang, Z., Zhang, X., et al. (2020). Effects of different levels of TGF-β expression and tumor cell necrosis rates in osteosarcoma on the chemotherapy resistance of osteosarcoma. Journal of Bone Oncology, 23, 100299. https://doi.org/10.1016/j.jbo.2020.100299

Article  PubMed  PubMed Central  Google Scholar 

Pietrovito, L., Leo, A., Gori, V., Lulli, M., Parri, M., Becherucci, V., Piccini, L., Bambi, F., Taddei, M. L., & Chiarugi, P. (2018). Bone marrow-derived mesenchymal stem cells promote invasiveness and transendothelial migration of osteosarcoma cells via a mesenchymal to amoeboid transition. Molecular Oncology, 12, 659–676. https://doi.org/10.1002/1878-0261.12189

Article  PubMed  PubMed Central  Google Scholar 

Kawano, M., Tanaka, K., Itonaga, I., Iwasaki, T., Tsumura, H. (2018). Interaction between human osteosarcoma and mesenchymal stem cells via an interleukin-8 signaling loop in the tumor microenvironment. Cell Communication and Signaling, 16. https://doi.org/10.1186/s12964-018-0225-2.

Cortini, M., Massa, A., Avnet, S., Bonuccelli, G., & Baldini, N. (2016). Tumor-activated mesenchymal stromal cells promote osteosarcoma stemness and migratory potential via IL-6 secretion. PLoS ONE, 11, e0166500. https://doi.org/10.1371/journal.pone.0166500

Article  PubMed  PubMed Central  Google Scholar 

Tu, B., Peng, Z.-X., Fan, Q.-M., Du, L., Yan, W., & Tang, T.-T. (2014). Osteosarcoma cells promote the production of pro-tumor cytokines in mesenchymal stem cells by inhibiting their osteogenic differentiation through the TGF-β/Smad2/3 pathway. Experimental Cell Research, 320, 164–173. https://doi.org/10.1016/j.yexcr.2013.10.013

Comments (0)

No login
gif