Metal-modulated T cell antitumor immunity and emerging metalloimmunotherapy

Oliveira GA-O, Wu CA-O (2023) Dynamics and specificities of T cells in cancer immunotherapy. Nat Rev Cancer, 23, 295–316.

Puig-Saus CA-O, Sennino B, Peng S et al. (2023) Neoantigen-targeted CD8(+) T cell responses with PD-1 blockade therapy. Nature, 615, 697–704.

Rojas LA-O, Sethna Z, Soares KA-OX et al. (2023) Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature, 618, 144–150.

Schenkel JA-O, Pauken KA-O. (2023) Localization, tissue biology and T cell state - implications for cancer immunotherapy. Nat Rev Immunol, 23, 807–823.

Park, J., Hsueh, P.-C., Li, Z., & Ho, P.-C. (2023). Microenvironment-driven metabolic adaptations guiding CD8+ T cell anti-tumor immunity. Immunity, 56, 32–42.

Article  PubMed  Google Scholar 

Arner, E. N., & Rathmell, J. C. (2023). Metabolic programming and immune suppression in the tumor microenvironment. Cancer Cell, 41, 421–433.

Article  PubMed  PubMed Central  Google Scholar 

Liao, P., Chang, N., Xu, B., et al. (2022). Amino acid metabolism: Challenges and opportunities for the therapeutic treatment of leukemia and lymphoma. Immunology & Cell Biology, 100, 507–528.

Article  Google Scholar 

Kao, K.-C., Vilbois, S., Tsai, C.-H., & Ho, P.-C. (2022). Metabolic communication in the tumour–immune microenvironment. Nature Cell Biology, 24, 1574–1583.

Article  PubMed  Google Scholar 

Hong, Y., Walling, B. L., Kim, H. R., et al. (2023). ST3GAL1 and betaII-spectrin pathways control CAR T cell migration to target tumors. Nature Immunology, 24, 1007–1019.

Article  PubMed  PubMed Central  Google Scholar 

Hickman, A., Koetsier, J., Kurtanich, T., et al. (2022). LFA-1 activation enriches tumor-specific T cells in a cold tumor model and synergizes with CTLA-4 blockade. The Journal of Clinical Investigation, 132, e154152.

Article  PubMed  PubMed Central  Google Scholar 

Haake, M., Haack, B., Schafer, T., et al. (2023). Tumor-derived GDF-15 blocks LFA-1 dependent T cell recruitment and suppresses responses to anti-PD-1 treatment. Nature Communications, 14, 4253.

Article  PubMed  PubMed Central  Google Scholar 

DeGrendele HC, Kosfiszer M Fau - Estess P, Estess P Fau - Siegelman MH, Siegelman MH. (1997)  CD44 activation and associated primary adhesion is inducible via T cell receptor stimulation. J Immunol, 159, 2549–2553.

Ong, S. T., Ng, A. S., Ng, X. R., et al. (2019). Extracellular K+Dampens T cell functions: Implications for immune suppression in the tumor microenvironment. Bioelectricity, 1, 169–179.

Article  PubMed  PubMed Central  Google Scholar 

Gurusamy, D., Clever, D., Eil, R., & Restifo, N. P. (2017). Novel “Elements” of Immune Suppression within the Tumor Microenvironment. Cancer Immunology Research, 5, 426–433.

Article  PubMed  PubMed Central  Google Scholar 

Hrvat A, Schmidt M, Wagner B et al. (2023) Electrolyte imbalance causes suppression of NK and T cell effector function in malignant ascites. Journal of Experimental & Clinical Cancer Research, 42.

Heim, L., Friedrich, J., Engelhardt, M., et al. (2018). NFATc1 Promotes Antitumoral Effector Functions and Memory CD8(+) T-cell differentiation during non-small cell lung cancer development. Cancer Research, 78, 3619–3633.

Article  PubMed  Google Scholar 

Tanaka Y, Nakao A, Miyake Y et al. (2021) Small molecule inhibitors targeting nuclear factor kappaB activation markedly reduce expression of interleukin-2, but not interferon-gamma, induced by phorbol esters and calcium ionophores. Int J Mol Sci 22.

Cronin, S. J. F., Seehus, C., Weidinger, A., et al. (2018). The metabolite BH4 controls T cell proliferation in autoimmunity and cancer. Nature, 563, 564–568.

Article  PubMed  PubMed Central  Google Scholar 

Ho, P. C., Bihuniak, J. D., Macintyre, A. N., et al. (2015). phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T Cell responses. Cell, 162, 1217–1228.

Article  PubMed  PubMed Central  Google Scholar 

Nath, A., Pal, R., Singh, L. M., et al. (2018). Gold-manganese oxide nanocomposite suppresses hypoxia and augments pro-inflammatory cytokines in tumor associated macrophages. International Immunopharmacology, 57, 157–164.

Article  PubMed  Google Scholar 

Ravell, J. C., Chauvin, S. D., He, T., & Lenardo, M. (2020). An Update on XMEN Disease. Journal of Clinical Immunology, 40, 671–681.

Article  PubMed  PubMed Central  Google Scholar 

Brault, J., Meis, R. J., Li, L., et al. (2021). MAGT1 messenger RNA-corrected autologous T and natural killer cells for potential cell therapy in X-linked immunodeficiency with magnesium defect, Epstein-Barr virus infection and neoplasia disease. Cytotherapy, 23, 203–210.

Article  PubMed  Google Scholar 

Sang, L. J., Ju, H. Q., Liu, G. P., et al. (2018). LncRNA CamK-A regulates Ca(2+)-signaling-mediated tumor microenvironment remodeling. Molecular Cell, 72(71–83), e77.

Google Scholar 

Sun J-L, Zhang N-P, Xu R-C et al. (2021) Tumor cell-imposed iron restriction drives immunosuppressive polarization of tumor-associated macrophages. Journal of Translational Medicine 19.

Sapkota, M., & Knoell, D. L. (2018). Essential role of zinc and zinc transporters in myeloid cell function and host defense against infection. Journal of Immunology Research, 2018, 4315140.

Article  PubMed  PubMed Central  Google Scholar 

Sun, X., Zhang, Y., Li, J., et al. (2021). Amplifying STING activation by cyclic dinucleotide-manganese particles for local and systemic cancer metalloimmunotherapy. Nature Nanotechnology, 16, 1260–1270.

Article  PubMed  PubMed Central  Google Scholar 

Lotscher, J., Marti, I. L. A. A., Kirchhammer, N., et al. (2022). Magnesium sensing via LFA-1 regulates CD8(+) T cell effector function. Cell, 185(585–602), e529.

Google Scholar 

Cheng F, Peng G, Lu Y et al. (2022) Relationship between copper and immunity: The potential role of copper in tumor immunity. Frontiers in Oncology 12.

Chen S, Cui W, Chi Z et al. (2022) Tumor-associated macrophages are shaped by intratumoral high potassium via Kir2.1. Cell Metabolism 34, 1843–1859.e1811.

Sharma, G., Sharma, A., Kim, I., et al. (2024). A dietary commensal microbe enhances antitumor immunity by activating tumor macrophages to sequester iron. Nature Immunology, 25, 790–801.

Article  PubMed  Google Scholar 

Trebak, M., & Kinet, J. P. (2019). Calcium signalling in T cells. Nature Reviews Immunology, 19, 154–169.

Article  PubMed  PubMed Central  Google Scholar 

Go CA-O, Hooper R, Aronson MA-O et al. (2019) The Ca(2+) export pump PMCA clears near-membrane Ca(2+) to facilitate store-operated Ca(2+) entry and NFAT activation. Sci Signal 12, eaaw2627.

Byun, J.-K., Park, M., Lee, S., et al. (2020). Inhibition of glutamine utilization synergizes with immune checkpoint inhibitor to promote antitumor immunity. Molecular Cell, 80, 592-606.e598.

Article  PubMed  Google Scholar 

Rosencrans, W. M., Aguilella, V. M., Rostovtseva, T. K., & Bezrukov, S. M. (2021). alpha-Synuclein emerges as a potent regulator of VDAC-facilitated calcium transport. Cell Calcium, 95, 102355.

Article  PubMed  PubMed Central  Google Scholar 

Acharya, T. K., Kumar, S., Rokade, T. P., et al. (2023). TRPV4 regulates mitochondrial Ca(2+)-status and physiology in primary murine T cells based on their immunological state. Life Sciences, 318, 121493.

Article  PubMed  Google Scholar 

Fan, M., Zhang, J., Tsai, C. W., et al. (2020). Structure and mechanism of the mitochondrial Ca(2+) uniporter holocomplex. Nature, 582, 129–133.

Article  PubMed  PubMed Central  Google Scholar 

Lewis, R. S. (2007). The molecular choreography of a store-operated calcium channel. Nature, 446, 284–287.

Article  PubMed  Google Scholar 

Garbincius JA-O, Elrod JA-O. (2022) Mitochondrial calcium exchange in physiology and disease. Physiol Rev 102, 893–992.

Luchsinger, L. L., de Almeida, M. J., Corrigan, D. J., et al. (2016). Mitofusin 2 maintains haematopoietic stem cells with extensive lymphoid potential. Nature, 529, 528–531.

Article  PubMed  PubMed Central  Google Scholar 

Peng, W., Wong, Y. C., & Krainc, D. (2020). Mitochondria-lysosome contacts regulate mitochondrial Ca(2+) dynamics via lysosomal TRPML1. Proc Natl Acad Sci U S A, 117, 19266–19275.

Article  PubMed  PubMed Central  Google Scholar 

Chen, D., Xie, J., Fiskesund, R., et al. (2018). Chloroquine modulates antitumor immune response by resetting tumor-associated macrophages toward M1 phenotype. Nature Communications, 9, 873.

Article  PubMed  PubMed Central  Google Scholar 

Gawne, P., Man, F., Fonslet, J., et al. (2018). Manganese-52: Applications in cell radiolabelling and liposomal nanomedicine PET imaging using oxine (8-hydroxyquinoline) as an ionophore. Dalton Transactions, 47, 9283–9293.

Article  PubMed  Google Scholar 

Mercadante, C. J., Prajapati, M., Conboy, H. L., et al. (2019). Manganese transporter Slc30a10 controls physiological manganese excretion and toxicity. The Journal of Clinical Investigation, 129, 5442–5461.

Article  PubMed  PubMed Central  Google Scholar 

Choi, E. K., Nguyen, T. T., Iwase, S., & Seo, Y. A. (2019). Ferroportin disease mutations influence manganese accumulation and cytotoxicity. The FASEB Journal, 33, 2228–2240.

Article  PubMed 

Comments (0)

No login
gif