Anand, U., Dey, A., Chandel, A. K. S., Sanyal, R., Mishra, A., Pandey, D. K., et al. (2023). Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes & Diseases, 10(4), 1367–1401. https://doi.org/10.1016/j.gendis.2022.02.007
Tang, J. L., Moonshi, S. S., Wu, Y., Cowin, G., Vazquez-Prada, K. X., Tran, H. D., et al. (2025). A methotrexate labelled dual metal oxide nanocomposite for long-lasting anti-cancer theranostics. Materials Today Bio, 30, 101377.
Article PubMed CAS Google Scholar
Ta, H. T., Dass, C. R., Larson, I., Choong, P. F., & Dunstan, D. E. (2009). A chitosan hydrogel delivery system for osteosarcoma gene therapy with pigment epithelium-derived factor combined with chemotherapy. Biomaterials, 30(27), 4815–4823.
Article PubMed CAS Google Scholar
Ta, H. T., Dass, C. R., Larson, I., Choong, P. F., & Dunstan, D. E. (2009). A chitosan–dipotassium orthophosphate hydrogel for the delivery of doxorubicin in the treatment of osteosarcoma. Biomaterials, 30(21), 3605–3613.
Article PubMed CAS Google Scholar
Tang, J. L., Moonshi, S. S., & Ta, H. T. (2023). Nanoceria: An innovative strategy for cancer treatment. Cellular and Molecular Life Sciences, 80(2), 46.
Article PubMed PubMed Central CAS Google Scholar
Baskar, R., Lee, K. A., Yeo, R., & Yeoh, K. W. (2012). Cancer and radiation therapy: Current advances and future directions. International Journal of Medical Sciences, 9(3), 193–199. https://doi.org/10.7150/ijms.3635
Article PubMed PubMed Central Google Scholar
Robatel, S., & Schenk, M. (2022). Current limitations and novel perspectives in pancreatic cancer treatment. Cancers (Basel), 14(4). https://doi.org/10.3390/cancers14040985
Vazquez-Prada, K. X., Moonshi, S. S., Xu, Z. P., & Ta, H. T. (2023). Photothermal nanomaterials for theranostics of atherosclerosis and thrombosis. Applied Materials Today, 35,. https://doi.org/10.1016/j.apmt.2023.101967
Anh Tran, N., Seok Song, M., Kim, G., Binh Nguyen, N., Hoàng Ly, N., Lee, S. Y., et al. (2022). Oxygen-replenishing manganese oxide catalytic nanoparticles on removable pipette surfaces for hypoxic tumour photodynamic therapy. Applied Surface Science, 604,. https://doi.org/10.1016/j.apsusc.2022.154516
Yang, Z., Yuan, M., Cheng, Z., Liu, B., Ma, Z., Ma, J., et al. (2024). Defect-repaired g-C(3)N(4) nanosheets: Elevating the efficacy of sonodynamic cancer therapy through enhanced charge carrier migration. Angewandte Chemie (International ed. in English), 63(18), e202401758. https://doi.org/10.1002/anie.202401758
Article PubMed CAS Google Scholar
Ma, Z., Yuan, M., Cheng, Z., Yang, Z., Yang, L., Liu, B., et al. (2024). A mild and efficient sonothermal tumor therapy enhanced by sonodynamic effect with biodegradable red phosphorus nanoparticles. Chemical Engineering Journal, 482,. https://doi.org/10.1016/j.cej.2024.148711
Bai, Y., Liu, M., Wang, X., Liu, K., Liu, X., & Duan, X. (2023). Multifunctional nanoparticles for enhanced chemodynamic/photodynamic therapy through a photothermal, H(2)O(2)-elevation, and GSH-consumption strategy. ACS Applied Materials & Interfaces, 15(48), 55379–55391. https://doi.org/10.1021/acsami.3c12479
Goldberg, M. S. (2019). Improving cancer immunotherapy through nanotechnology. Nature Reviews Cancer, 19(10), 587–602. https://doi.org/10.1038/s41568-019-0186-9
Article PubMed CAS Google Scholar
Vargiu, V., Amar, I. D., Rosati, A., Dinoi, G., Turco, L. C., Capozzi, V. A., et al. (2021). Hormone replacement therapy and cervical cancer: A systematic review of the literature. Climacteric, 24(2), 120–127. https://doi.org/10.1080/13697137.2020.1826426
Article PubMed CAS Google Scholar
Yang, B., Ding, L., Chen, Y., & Shi, J. (2020). Augmenting tumor-starvation therapy by cancer cell autophagy inhibition. Advanced Science (Weinh), 7(6), 1902847. https://doi.org/10.1002/advs.201902847
Liu, Z. L., Chen, H. H., Zheng, L. L., Sun, L. P., & Shi, L. (2023). Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduction and Targeted Therapy, 8(1), 198. https://doi.org/10.1038/s41392-023-01460-1
Article PubMed PubMed Central CAS Google Scholar
Hasani, A., & Leighl, N. (2011). Classification and toxicities of vascular disrupting agents. Clinical Lung Cancer, 12(1), 18–25. https://doi.org/10.3816/CLC.2011.n.002
Article PubMed CAS Google Scholar
Saghafian Larijani, R., Shabani Ravari, N., Goodarzi, N., Akhlaghpour, S., Saghafian Larijani, S., Rouini, M. R., et al. (2022). Current status of transarterial chemoembolization (TACE) agents in hepatocellular carcinoma treatment. Journal of Drug Delivery Science and Technology, 77,. https://doi.org/10.1016/j.jddst.2022.103905
Fung, M. K. L., & Chan, G. C. (2017). Drug-induced amino acid deprivation as strategy for cancer therapy. Journal of Hematology & Oncology, 10(1), 144. https://doi.org/10.1186/s13045-017-0509-9
Zhang, Y., Li, Q., Huang, Z., Li, B., Nice, E. C., Huang, C., et al. (2022). Targeting glucose metabolism enzymes in cancer treatment: Current and emerging strategies. Cancers (Basel), 14(19). https://doi.org/10.3390/cancers14194568.
de la Cruz-Lopez, K. G., Castro-Munoz, L. J., Reyes-Hernandez, D. O., Garcia-Carranca, A., & Manzo-Merino, J. (2019). Lactate in the regulation of tumor microenvironment and therapeutic approaches. Frontiers in Oncology, 9, 1143. https://doi.org/10.3389/fonc.2019.01143
Article PubMed PubMed Central Google Scholar
Guelfi, S., Hodivala-Dilke, K., & Bergers, G. (2024). Targeting the tumour vasculature: From vessel destruction to promotion. Nature Reviews Cancer, 24(10), 655–675. https://doi.org/10.1038/s41568-024-00736-0
Article PubMed CAS Google Scholar
Muz, B., de la Puente, P., Azab, F., & Azab, A. K. (2015). The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckl), 3, 83–92. https://doi.org/10.2147/HP.S93413
Huang, Y., Gong, P., Liu, M., Peng, J., Zhang, R., Qi, C., et al. (2021). Near-infrared light enhanced starvation therapy to effectively promote cell apoptosis and inhibit migration. Materials Advances, 2(12), 3981–3992. https://doi.org/10.1039/d1ma00148e
Mitchell, M. J., Billingsley, M. M., Haley, R. M., Wechsler, M. E., Peppas, N. A., & Langer, R. (2021). Engineering precision nanoparticles for drug delivery. Nature Reviews Drug Discovery, 20(2), 101–124. https://doi.org/10.1038/s41573-020-0090-8
Article PubMed CAS Google Scholar
Wang, J., Li, Y., & Nie, G. (2021). Multifunctional biomolecule nanostructures for cancer therapy. Nature Reviews Materials, 6(9), 766–783. https://doi.org/10.1038/s41578-021-00315-x
Article PubMed PubMed Central CAS Google Scholar
Agrawal, S., Singh, G. K., & Tiwari, S. (2024). Focused starvation of tumor cells using glucose oxidase: A comprehensive review. International Journal of Biological Macromolecules, 281(Pt 3), 136444. https://doi.org/10.1016/j.ijbiomac.2024.136444
Article PubMed CAS Google Scholar
Yu, S., Chen, Z., Zeng, X., Chen, X., & Gu, Z. (2019). Advances in nanomedicine for cancer starvation therapy. Theranostics, 9(26), 8026–8047. https://doi.org/10.7150/thno.38261
Article PubMed PubMed Central CAS Google Scholar
Gacche, R. N. (2023). Changing landscape of anti-angiogenic therapy: Novel approaches and clinical perspectives. Biochimica et Biophysica Acta - Reviews on Cancer, 1878(6), 189020. https://doi.org/10.1016/j.bbcan.2023.189020
Article PubMed CAS Google Scholar
Oguntade, A. S., Al-Amodi, F., Alrumayh, A., Alobaida, M., & Bwalya, M. (2021). Anti-angiogenesis in cancer therapeutics: The magic bullet. Journal of the Egyptian National Cancer Institute, 33(1), 15. https://doi.org/10.1186/s43046-021-00072-6
Rajabi, M., & Mousa, S. A. (2017). The role of angiogenesis in cancer treatment. Biomedicines, 5(2). https://doi.org/10.3390/biomedicines5020034.
van Heeckeren, W. J., Bhakta, S., Ortiz, J., Duerk, J., Cooney, M. M., Dowlati, A., et al. (2006). Promise of new vascular-disrupting agents balanced with cardiac toxicity: Is it time for oncologists to get to know their cardiologists? Journal of Clinical Oncology, 24(10), 1485–1488. https://doi.org/10.1200/JCO.2005.04.8801
Article PubMed CAS Google Scholar
Sidorenko, V., Scodeller, P., Uustare, A., Ogibalov, I., Tasa, A., Tshubrik, O., et al. (2024). Targeting vascular disrupting agent-treated tumor microenvironment with tissue-penetrating nanotherapy. Science and Reports, 14(1), 17513. https://doi.org/10.1038/s41598-024-64610-7
Wang, Y. X., De Baere, T., Idee, J. M., & Ballet, S. (2015). Transcatheter embolization therapy in liver cancer: An update of clini
Comments (0)