Nanomaterials in cancer starvation therapy: pioneering advances, therapeutic potential, and clinical challenges

Anand, U., Dey, A., Chandel, A. K. S., Sanyal, R., Mishra, A., Pandey, D. K., et al. (2023). Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes & Diseases, 10(4), 1367–1401. https://doi.org/10.1016/j.gendis.2022.02.007

Article  CAS  Google Scholar 

Tang, J. L., Moonshi, S. S., Wu, Y., Cowin, G., Vazquez-Prada, K. X., Tran, H. D., et al. (2025). A methotrexate labelled dual metal oxide nanocomposite for long-lasting anti-cancer theranostics. Materials Today Bio, 30, 101377.

Article  PubMed  CAS  Google Scholar 

Ta, H. T., Dass, C. R., Larson, I., Choong, P. F., & Dunstan, D. E. (2009). A chitosan hydrogel delivery system for osteosarcoma gene therapy with pigment epithelium-derived factor combined with chemotherapy. Biomaterials, 30(27), 4815–4823.

Article  PubMed  CAS  Google Scholar 

Ta, H. T., Dass, C. R., Larson, I., Choong, P. F., & Dunstan, D. E. (2009). A chitosan–dipotassium orthophosphate hydrogel for the delivery of doxorubicin in the treatment of osteosarcoma. Biomaterials, 30(21), 3605–3613.

Article  PubMed  CAS  Google Scholar 

Tang, J. L., Moonshi, S. S., & Ta, H. T. (2023). Nanoceria: An innovative strategy for cancer treatment. Cellular and Molecular Life Sciences, 80(2), 46.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Baskar, R., Lee, K. A., Yeo, R., & Yeoh, K. W. (2012). Cancer and radiation therapy: Current advances and future directions. International Journal of Medical Sciences, 9(3), 193–199. https://doi.org/10.7150/ijms.3635

Article  PubMed  PubMed Central  Google Scholar 

Robatel, S., & Schenk, M. (2022). Current limitations and novel perspectives in pancreatic cancer treatment. Cancers (Basel), 14(4). https://doi.org/10.3390/cancers14040985

Vazquez-Prada, K. X., Moonshi, S. S., Xu, Z. P., & Ta, H. T. (2023). Photothermal nanomaterials for theranostics of atherosclerosis and thrombosis. Applied Materials Today, 35,. https://doi.org/10.1016/j.apmt.2023.101967

Anh Tran, N., Seok Song, M., Kim, G., Binh Nguyen, N., Hoàng Ly, N., Lee, S. Y., et al. (2022). Oxygen-replenishing manganese oxide catalytic nanoparticles on removable pipette surfaces for hypoxic tumour photodynamic therapy. Applied Surface Science, 604,. https://doi.org/10.1016/j.apsusc.2022.154516

Yang, Z., Yuan, M., Cheng, Z., Liu, B., Ma, Z., Ma, J., et al. (2024). Defect-repaired g-C(3)N(4) nanosheets: Elevating the efficacy of sonodynamic cancer therapy through enhanced charge carrier migration. Angewandte Chemie (International ed. in English), 63(18), e202401758. https://doi.org/10.1002/anie.202401758

Article  PubMed  CAS  Google Scholar 

Ma, Z., Yuan, M., Cheng, Z., Yang, Z., Yang, L., Liu, B., et al. (2024). A mild and efficient sonothermal tumor therapy enhanced by sonodynamic effect with biodegradable red phosphorus nanoparticles. Chemical Engineering Journal, 482,. https://doi.org/10.1016/j.cej.2024.148711

Bai, Y., Liu, M., Wang, X., Liu, K., Liu, X., & Duan, X. (2023). Multifunctional nanoparticles for enhanced chemodynamic/photodynamic therapy through a photothermal, H(2)O(2)-elevation, and GSH-consumption strategy. ACS Applied Materials & Interfaces, 15(48), 55379–55391. https://doi.org/10.1021/acsami.3c12479

Article  CAS  Google Scholar 

Goldberg, M. S. (2019). Improving cancer immunotherapy through nanotechnology. Nature Reviews Cancer, 19(10), 587–602. https://doi.org/10.1038/s41568-019-0186-9

Article  PubMed  CAS  Google Scholar 

Vargiu, V., Amar, I. D., Rosati, A., Dinoi, G., Turco, L. C., Capozzi, V. A., et al. (2021). Hormone replacement therapy and cervical cancer: A systematic review of the literature. Climacteric, 24(2), 120–127. https://doi.org/10.1080/13697137.2020.1826426

Article  PubMed  CAS  Google Scholar 

Yang, B., Ding, L., Chen, Y., & Shi, J. (2020). Augmenting tumor-starvation therapy by cancer cell autophagy inhibition. Advanced Science (Weinh), 7(6), 1902847. https://doi.org/10.1002/advs.201902847

Article  CAS  Google Scholar 

Liu, Z. L., Chen, H. H., Zheng, L. L., Sun, L. P., & Shi, L. (2023). Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduction and Targeted Therapy, 8(1), 198. https://doi.org/10.1038/s41392-023-01460-1

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hasani, A., & Leighl, N. (2011). Classification and toxicities of vascular disrupting agents. Clinical Lung Cancer, 12(1), 18–25. https://doi.org/10.3816/CLC.2011.n.002

Article  PubMed  CAS  Google Scholar 

Saghafian Larijani, R., Shabani Ravari, N., Goodarzi, N., Akhlaghpour, S., Saghafian Larijani, S., Rouini, M. R., et al. (2022). Current status of transarterial chemoembolization (TACE) agents in hepatocellular carcinoma treatment. Journal of Drug Delivery Science and Technology, 77,. https://doi.org/10.1016/j.jddst.2022.103905

Fung, M. K. L., & Chan, G. C. (2017). Drug-induced amino acid deprivation as strategy for cancer therapy. Journal of Hematology & Oncology, 10(1), 144. https://doi.org/10.1186/s13045-017-0509-9

Article  CAS  Google Scholar 

Zhang, Y., Li, Q., Huang, Z., Li, B., Nice, E. C., Huang, C., et al. (2022). Targeting glucose metabolism enzymes in cancer treatment: Current and emerging strategies. Cancers (Basel), 14(19). https://doi.org/10.3390/cancers14194568.

de la Cruz-Lopez, K. G., Castro-Munoz, L. J., Reyes-Hernandez, D. O., Garcia-Carranca, A., & Manzo-Merino, J. (2019). Lactate in the regulation of tumor microenvironment and therapeutic approaches. Frontiers in Oncology, 9, 1143. https://doi.org/10.3389/fonc.2019.01143

Article  PubMed  PubMed Central  Google Scholar 

Guelfi, S., Hodivala-Dilke, K., & Bergers, G. (2024). Targeting the tumour vasculature: From vessel destruction to promotion. Nature Reviews Cancer, 24(10), 655–675. https://doi.org/10.1038/s41568-024-00736-0

Article  PubMed  CAS  Google Scholar 

Muz, B., de la Puente, P., Azab, F., & Azab, A. K. (2015). The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckl), 3, 83–92. https://doi.org/10.2147/HP.S93413

Article  PubMed  Google Scholar 

Huang, Y., Gong, P., Liu, M., Peng, J., Zhang, R., Qi, C., et al. (2021). Near-infrared light enhanced starvation therapy to effectively promote cell apoptosis and inhibit migration. Materials Advances, 2(12), 3981–3992. https://doi.org/10.1039/d1ma00148e

Article  CAS  Google Scholar 

Mitchell, M. J., Billingsley, M. M., Haley, R. M., Wechsler, M. E., Peppas, N. A., & Langer, R. (2021). Engineering precision nanoparticles for drug delivery. Nature Reviews Drug Discovery, 20(2), 101–124. https://doi.org/10.1038/s41573-020-0090-8

Article  PubMed  CAS  Google Scholar 

Wang, J., Li, Y., & Nie, G. (2021). Multifunctional biomolecule nanostructures for cancer therapy. Nature Reviews Materials, 6(9), 766–783. https://doi.org/10.1038/s41578-021-00315-x

Article  PubMed  PubMed Central  CAS  Google Scholar 

Agrawal, S., Singh, G. K., & Tiwari, S. (2024). Focused starvation of tumor cells using glucose oxidase: A comprehensive review. International Journal of Biological Macromolecules, 281(Pt 3), 136444. https://doi.org/10.1016/j.ijbiomac.2024.136444

Article  PubMed  CAS  Google Scholar 

Yu, S., Chen, Z., Zeng, X., Chen, X., & Gu, Z. (2019). Advances in nanomedicine for cancer starvation therapy. Theranostics, 9(26), 8026–8047. https://doi.org/10.7150/thno.38261

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gacche, R. N. (2023). Changing landscape of anti-angiogenic therapy: Novel approaches and clinical perspectives. Biochimica et Biophysica Acta - Reviews on Cancer, 1878(6), 189020. https://doi.org/10.1016/j.bbcan.2023.189020

Article  PubMed  CAS  Google Scholar 

Oguntade, A. S., Al-Amodi, F., Alrumayh, A., Alobaida, M., & Bwalya, M. (2021). Anti-angiogenesis in cancer therapeutics: The magic bullet. Journal of the Egyptian National Cancer Institute, 33(1), 15. https://doi.org/10.1186/s43046-021-00072-6

Article  PubMed  Google Scholar 

Rajabi, M., & Mousa, S. A. (2017). The role of angiogenesis in cancer treatment. Biomedicines, 5(2). https://doi.org/10.3390/biomedicines5020034.

van Heeckeren, W. J., Bhakta, S., Ortiz, J., Duerk, J., Cooney, M. M., Dowlati, A., et al. (2006). Promise of new vascular-disrupting agents balanced with cardiac toxicity: Is it time for oncologists to get to know their cardiologists? Journal of Clinical Oncology, 24(10), 1485–1488. https://doi.org/10.1200/JCO.2005.04.8801

Article  PubMed  CAS  Google Scholar 

Sidorenko, V., Scodeller, P., Uustare, A., Ogibalov, I., Tasa, A., Tshubrik, O., et al. (2024). Targeting vascular disrupting agent-treated tumor microenvironment with tissue-penetrating nanotherapy. Science and Reports, 14(1), 17513. https://doi.org/10.1038/s41598-024-64610-7

Article  CAS  Google Scholar 

Wang, Y. X., De Baere, T., Idee, J. M., & Ballet, S. (2015). Transcatheter embolization therapy in liver cancer: An update of clini

Comments (0)

No login
gif