Novel immunotherapy for gastric cancer: targeting the CD47–SIRPα axis

Sung, H., Ferlay, J., Siegel, R. L., et al. (2021). Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer J Clin, 71, 209–249.

Google Scholar 

Balakrishnan, M., George, R., Sharma, A., & Graham, D. Y. (2017). Changing trends in stomach cancer throughout the world. Current Gastroenterology Rep, 19, 36.

Article  Google Scholar 

The National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncology, Gastric Cancer. https://www.nccn.org/professionals/physician_gls/pdf/gastric.pdf. 2024;version 5.

Shitara, K., Fleitas, T., Kawakami, H., et al. (2024). Pan-Asian adapted ESMO Clinical Practice Guidelines for the diagnosis, treatment and follow-up of patients with gastric cancer. ESMO Open., 9, 102226.

Article  PubMed  PubMed Central  Google Scholar 

Japanese Gastric Cancer Treatment Guidelines. (2021). 6th edition. Gastric Cancer, 2023(26), 1–25.

Google Scholar 

Wagner, A. D., Syn, N. L., Moehler, M., et al. (2017). Chemotherapy for advanced gastric cancer. Cochrane Database Syst Rev, 8, Cd004064.

Ooki, A., Shinozaki, E., & Yamaguchi, K. (2021). Immunotherapy in colorectal cancer: Current and future strategies. J Anus Rectum Colon., 5, 11–24.

Article  PubMed  PubMed Central  Google Scholar 

Ooki, A., Osumi, H., Chin, K., Watanabe, M., & Yamaguchi, K. (2023). Potent molecular-targeted therapies for advanced esophageal squamous cell carcinoma. Ther Adv Med Oncol., 15, 17588359221138376.

Article  PubMed  PubMed Central  Google Scholar 

Ooki, A., Osumi, H., Yoshino, K., & Yamaguchi, K. (2024). Yamaguchi K. Potent therapeutic strategy in gastric cancer with microsatellite instability-high and/or deficient mismatch repair. Gastric Cancer.

Ooki, A., & Yamaguchi, K. (2022). The dawn of precision medicine in diffuse-type gastric cancer. Ther Adv Med Oncol., 14, 17588359221083048.

Article  PubMed  PubMed Central  Google Scholar 

Kang, Y. K., Boku, N., Satoh, T., et al. (2017). Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet, 390, 2461–2471.

Article  PubMed  Google Scholar 

Waldman, A. D., Fritz, J. M., & Lenardo, M. J. (2020). A guide to cancer immunotherapy: From T cell basic science to clinical practice. Nature Reviews Immunology, 20, 651–668.

Article  PubMed  PubMed Central  Google Scholar 

Keren, L., Bosse, M., Marquez, D., et al. (2018). A structured tumor-immune microenvironment in triple negative breast cancer revealed by multiplexed ion beam imaging. Cell, 174, 1373-1387.e1319.

Article  PubMed  PubMed Central  Google Scholar 

Kim, I. S., Gao, Y., Welte, T., et al. (2019). Immuno-subtyping of breast cancer reveals distinct myeloid cell profiles and immunotherapy resistance mechanisms. Nature Cell Biology, 21, 1113–1126.

Article  PubMed  PubMed Central  Google Scholar 

Pittet, M. J., Michielin, O., & Migliorini, D. (2022). Clinical relevance of tumour-associated macrophages. Nature Reviews. Clinical Oncology, 19, 402–421.

Article  PubMed  Google Scholar 

Mantovani, A., Allavena, P., Marchesi, F., & Garlanda, C. (2022). Macrophages as tools and targets in cancer therapy. Nature Reviews. Drug Discovery, 21, 799–820.

Article  PubMed  PubMed Central  Google Scholar 

Willingham, S. B., Volkmer, J. P., Gentles, A. J., et al. (2012). The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc Natl Acad Sci U S A., 109, 6662–6667.

Article  PubMed  PubMed Central  Google Scholar 

Matlung, H. L., Szilagyi, K., Barclay, N. A., & van den Berg, T. K. (2017). The CD47-SIRPα signaling axis as an innate immune checkpoint in cancer. Immunological Reviews, 276, 145–164.

Article  PubMed  Google Scholar 

Komori, S., Saito, Y., Nishimura, T., et al. (2023). CD47 promotes peripheral T cell survival by preventing dendritic cell-mediated T cell necroptosis. Proc Natl Acad Sci U S A., 120, e2304943120.

Article  PubMed  PubMed Central  Google Scholar 

Feng, M., Jiang, W., Kim, B. Y. S., Zhang, C. C., Fu, Y. X., & Weissman, I. L. (2019). Phagocytosis checkpoints as new targets for cancer immunotherapy. Nature Reviews Cancer, 19, 568–586.

Article  PubMed  PubMed Central  Google Scholar 

Liu, Z., Chen, H., Ta, N., et al. (2023). Anti-CD47 antibody enhances the efficacy of chemotherapy in patients with gastric cancer liver metastasis. Journal of Cancer, 14, 350–359.

Article  PubMed  PubMed Central  Google Scholar 

Tseng, D., Volkmer, J. P., Willingham, S. B., et al. (2013). Anti-CD47 antibody-mediated phagocytosis of cancer by macrophages primes an effective antitumor T-cell response. Proc Natl Acad Sci U S A., 110, 11103–11108.

Article  PubMed  PubMed Central  Google Scholar 

Sockolosky, J. T., Dougan, M., Ingram, J. R., et al. (2016). Durable antitumor responses to CD47 blockade require adaptive immune stimulation. Proc Natl Acad Sci U S A., 113, E2646-2654.

Article  PubMed  PubMed Central  Google Scholar 

von Roemeling, C. A., Wang, Y., Qie, Y., et al. (2020). Therapeutic modulation of phagocytosis in glioblastoma can activate both innate and adaptive antitumour immunity. Nature Communications, 11, 1508.

Article  Google Scholar 

Shitara, K. W. Z., Tabernero, J., et al. (2025). Final analysis of the randomized phase 2 part of the ASPEN-06 study: A phase 2/3 study of evorpacept (ALX148), a CD47 myeloid checkpoint inhibitor, in patients with HER2-overexpressing gastric/gastroesophageal cancer (GC). Journal of Clinical Oncology, 43, 332.

Article  Google Scholar 

Iwasaki, A., & Medzhitov, R. (2010). Regulation of adaptive immunity by the innate immune system. Science, 327, 291–295.

Article  PubMed  PubMed Central  Google Scholar 

Jutras, I., & Desjardins, M. (2005). Phagocytosis: At the crossroads of innate and adaptive immunity. Annual Review of Cell and Developmental Biology, 21, 511–527.

Article  PubMed  Google Scholar 

Wynn, T. A., Chawla, A., & Pollard, J. W. (2013). Macrophage biology in development, homeostasis and disease. Nature, 496, 445–455.

Article  PubMed  PubMed Central  Google Scholar 

Liu, X., Pu, Y., Cron, K., et al. (2015). CD47 blockade triggers T cell-mediated destruction of immunogenic tumors. Nature Medicine, 21, 1209–1215.

Article  PubMed  PubMed Central  Google Scholar 

Chao, M. P., Jaiswal, S., Weissman-Tsukamoto, R., et al. (2010). Calreticulin is the dominant pro-phagocytic signal on multiple human cancers and is counterbalanced by CD47. Sci Transl Med, 2, 63ra94.

Barclay, A. N., & Van den Berg, T. K. (2014). The interaction between signal regulatory protein alpha (SIRPα) and CD47: Structure, function, and therapeutic target. Annual Review of Immunology, 32, 25–50.

Article  PubMed  Google Scholar 

Tsai, R. K., & Discher, D. E. (2008). Inhibition of “self” engulfment through deactivation of myosin-II at the phagocytic synapse between human cells. Journal of Cell Biology, 180, 989–1003.

Article  PubMed  PubMed Central  Google Scholar 

Kharitonenkov, A., Chen, Z., Sures, I., Wang, H., Schilling, J., & Ullrich, A. (1997). A family of proteins that inhibit signalling through tyrosine kinase receptors. Nature, 386, 181–186.

Article  PubMed  Google Scholar 

Li, Y., Zhou, H., Liu, P., et al. (2023). SHP2 deneddylation mediates tumor immunosuppression in colon cancer via the CD47/SIRPα axis. J Clin Invest, 133.

Seiffert, M., Cant, C., Chen, Z., et al. (1999). Human signal-regulatory protein is expressed on normal, but not on subsets of leukemic myeloid cells and mediates cellular adhesion involving its counterreceptor CD47. Blood, 94, 3633–3643.

Article  PubMed  Google Scholar 

Murata, T., Ohnishi, H., Okazawa, H., et al. (2006). CD47 promotes neuronal development through Src- and FRG/Vav2-mediated activation of Rac and Cdc42. Journal of Neuroscience, 26, 12397–12407.

Article  PubMed  Google Scholar 

Adams, S., van der Laan, L. J., Vernon-Wilson, E., et al. (1998). Signal-regulatory protein is selectively expressed by myeloid and neuronal cells. The Journal of Immunology, 161, 1853–1859.

Article  PubMed  Google Scholar 

Hedrick, C. C., & Malanchi, I. (2022). Neutrophils in cancer: Heterogeneous and multifaceted. Nature Reviews Immunology, 22, 173–187.

Article  PubMed 

Comments (0)

No login
gif