Sung, H., Ferlay, J., Siegel, R. L., et al. (2021). Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer J Clin, 71, 209–249.
Balakrishnan, M., George, R., Sharma, A., & Graham, D. Y. (2017). Changing trends in stomach cancer throughout the world. Current Gastroenterology Rep, 19, 36.
The National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncology, Gastric Cancer. https://www.nccn.org/professionals/physician_gls/pdf/gastric.pdf. 2024;version 5.
Shitara, K., Fleitas, T., Kawakami, H., et al. (2024). Pan-Asian adapted ESMO Clinical Practice Guidelines for the diagnosis, treatment and follow-up of patients with gastric cancer. ESMO Open., 9, 102226.
Article PubMed PubMed Central Google Scholar
Japanese Gastric Cancer Treatment Guidelines. (2021). 6th edition. Gastric Cancer, 2023(26), 1–25.
Wagner, A. D., Syn, N. L., Moehler, M., et al. (2017). Chemotherapy for advanced gastric cancer. Cochrane Database Syst Rev, 8, Cd004064.
Ooki, A., Shinozaki, E., & Yamaguchi, K. (2021). Immunotherapy in colorectal cancer: Current and future strategies. J Anus Rectum Colon., 5, 11–24.
Article PubMed PubMed Central Google Scholar
Ooki, A., Osumi, H., Chin, K., Watanabe, M., & Yamaguchi, K. (2023). Potent molecular-targeted therapies for advanced esophageal squamous cell carcinoma. Ther Adv Med Oncol., 15, 17588359221138376.
Article PubMed PubMed Central Google Scholar
Ooki, A., Osumi, H., Yoshino, K., & Yamaguchi, K. (2024). Yamaguchi K. Potent therapeutic strategy in gastric cancer with microsatellite instability-high and/or deficient mismatch repair. Gastric Cancer.
Ooki, A., & Yamaguchi, K. (2022). The dawn of precision medicine in diffuse-type gastric cancer. Ther Adv Med Oncol., 14, 17588359221083048.
Article PubMed PubMed Central Google Scholar
Kang, Y. K., Boku, N., Satoh, T., et al. (2017). Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet, 390, 2461–2471.
Waldman, A. D., Fritz, J. M., & Lenardo, M. J. (2020). A guide to cancer immunotherapy: From T cell basic science to clinical practice. Nature Reviews Immunology, 20, 651–668.
Article PubMed PubMed Central Google Scholar
Keren, L., Bosse, M., Marquez, D., et al. (2018). A structured tumor-immune microenvironment in triple negative breast cancer revealed by multiplexed ion beam imaging. Cell, 174, 1373-1387.e1319.
Article PubMed PubMed Central Google Scholar
Kim, I. S., Gao, Y., Welte, T., et al. (2019). Immuno-subtyping of breast cancer reveals distinct myeloid cell profiles and immunotherapy resistance mechanisms. Nature Cell Biology, 21, 1113–1126.
Article PubMed PubMed Central Google Scholar
Pittet, M. J., Michielin, O., & Migliorini, D. (2022). Clinical relevance of tumour-associated macrophages. Nature Reviews. Clinical Oncology, 19, 402–421.
Mantovani, A., Allavena, P., Marchesi, F., & Garlanda, C. (2022). Macrophages as tools and targets in cancer therapy. Nature Reviews. Drug Discovery, 21, 799–820.
Article PubMed PubMed Central Google Scholar
Willingham, S. B., Volkmer, J. P., Gentles, A. J., et al. (2012). The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc Natl Acad Sci U S A., 109, 6662–6667.
Article PubMed PubMed Central Google Scholar
Matlung, H. L., Szilagyi, K., Barclay, N. A., & van den Berg, T. K. (2017). The CD47-SIRPα signaling axis as an innate immune checkpoint in cancer. Immunological Reviews, 276, 145–164.
Komori, S., Saito, Y., Nishimura, T., et al. (2023). CD47 promotes peripheral T cell survival by preventing dendritic cell-mediated T cell necroptosis. Proc Natl Acad Sci U S A., 120, e2304943120.
Article PubMed PubMed Central Google Scholar
Feng, M., Jiang, W., Kim, B. Y. S., Zhang, C. C., Fu, Y. X., & Weissman, I. L. (2019). Phagocytosis checkpoints as new targets for cancer immunotherapy. Nature Reviews Cancer, 19, 568–586.
Article PubMed PubMed Central Google Scholar
Liu, Z., Chen, H., Ta, N., et al. (2023). Anti-CD47 antibody enhances the efficacy of chemotherapy in patients with gastric cancer liver metastasis. Journal of Cancer, 14, 350–359.
Article PubMed PubMed Central Google Scholar
Tseng, D., Volkmer, J. P., Willingham, S. B., et al. (2013). Anti-CD47 antibody-mediated phagocytosis of cancer by macrophages primes an effective antitumor T-cell response. Proc Natl Acad Sci U S A., 110, 11103–11108.
Article PubMed PubMed Central Google Scholar
Sockolosky, J. T., Dougan, M., Ingram, J. R., et al. (2016). Durable antitumor responses to CD47 blockade require adaptive immune stimulation. Proc Natl Acad Sci U S A., 113, E2646-2654.
Article PubMed PubMed Central Google Scholar
von Roemeling, C. A., Wang, Y., Qie, Y., et al. (2020). Therapeutic modulation of phagocytosis in glioblastoma can activate both innate and adaptive antitumour immunity. Nature Communications, 11, 1508.
Shitara, K. W. Z., Tabernero, J., et al. (2025). Final analysis of the randomized phase 2 part of the ASPEN-06 study: A phase 2/3 study of evorpacept (ALX148), a CD47 myeloid checkpoint inhibitor, in patients with HER2-overexpressing gastric/gastroesophageal cancer (GC). Journal of Clinical Oncology, 43, 332.
Iwasaki, A., & Medzhitov, R. (2010). Regulation of adaptive immunity by the innate immune system. Science, 327, 291–295.
Article PubMed PubMed Central Google Scholar
Jutras, I., & Desjardins, M. (2005). Phagocytosis: At the crossroads of innate and adaptive immunity. Annual Review of Cell and Developmental Biology, 21, 511–527.
Wynn, T. A., Chawla, A., & Pollard, J. W. (2013). Macrophage biology in development, homeostasis and disease. Nature, 496, 445–455.
Article PubMed PubMed Central Google Scholar
Liu, X., Pu, Y., Cron, K., et al. (2015). CD47 blockade triggers T cell-mediated destruction of immunogenic tumors. Nature Medicine, 21, 1209–1215.
Article PubMed PubMed Central Google Scholar
Chao, M. P., Jaiswal, S., Weissman-Tsukamoto, R., et al. (2010). Calreticulin is the dominant pro-phagocytic signal on multiple human cancers and is counterbalanced by CD47. Sci Transl Med, 2, 63ra94.
Barclay, A. N., & Van den Berg, T. K. (2014). The interaction between signal regulatory protein alpha (SIRPα) and CD47: Structure, function, and therapeutic target. Annual Review of Immunology, 32, 25–50.
Tsai, R. K., & Discher, D. E. (2008). Inhibition of “self” engulfment through deactivation of myosin-II at the phagocytic synapse between human cells. Journal of Cell Biology, 180, 989–1003.
Article PubMed PubMed Central Google Scholar
Kharitonenkov, A., Chen, Z., Sures, I., Wang, H., Schilling, J., & Ullrich, A. (1997). A family of proteins that inhibit signalling through tyrosine kinase receptors. Nature, 386, 181–186.
Li, Y., Zhou, H., Liu, P., et al. (2023). SHP2 deneddylation mediates tumor immunosuppression in colon cancer via the CD47/SIRPα axis. J Clin Invest, 133.
Seiffert, M., Cant, C., Chen, Z., et al. (1999). Human signal-regulatory protein is expressed on normal, but not on subsets of leukemic myeloid cells and mediates cellular adhesion involving its counterreceptor CD47. Blood, 94, 3633–3643.
Murata, T., Ohnishi, H., Okazawa, H., et al. (2006). CD47 promotes neuronal development through Src- and FRG/Vav2-mediated activation of Rac and Cdc42. Journal of Neuroscience, 26, 12397–12407.
Adams, S., van der Laan, L. J., Vernon-Wilson, E., et al. (1998). Signal-regulatory protein is selectively expressed by myeloid and neuronal cells. The Journal of Immunology, 161, 1853–1859.
Hedrick, C. C., & Malanchi, I. (2022). Neutrophils in cancer: Heterogeneous and multifaceted. Nature Reviews Immunology, 22, 173–187.
Comments (0)