Chan, A. S., et al. (2014). Tumour suppressors and cellular senescence. IUBMB Life, 66(12), 812–822.
Abdel-Rahman, W. M. (2008). Genomic instability and carcinogenesis: An update. Current Genomics, 9(8), 535–541.
Article PubMed PubMed Central Google Scholar
Andor, N., Maley, C. C., & Ji, H. P. (2017). Genomic instability in cancer: Teetering on the limit of tolerance. Cancer Research, 77(9), 2179–2185.
Article PubMed PubMed Central Google Scholar
Negrini, S., Gorgoulis, V. G., & Halazonetis, T. D. (2010). Genomic instability–An evolving hallmark of cancer. Nature Reviews Molecular Cell Biology, 11(3), 220–228.
Lengauer, C., Kinzler, K. W., & Vogelstein, B. (1997). Genetic instability in colorectal cancers. Nature, 386(6625), 623–627.
Li, J., et al. (2023). Non-cell-autonomous cancer progression from chromosomal instability. Nature, 620(7976), 1080–1088.
Article PubMed PubMed Central Google Scholar
Kasperski, A. and H.H. Heng, (2024) The spiral model of evolution: Stable life forms of organisms and unstable life forms of cancers. Int J Mol Sci 25(17).
Boland, C. R., Shin, S. K., & Goel, A. (2009). Promoter methylation in the genesis of gastrointestinal cancer. Yonsei Medical Journal, 50(3), 309–321.
Article PubMed PubMed Central Google Scholar
Bakhoum, S. F., & Cantley, L. C. (2018). The multifaceted role of chromosomal instability in cancer and its microenvironment. Cell, 174(6), 1347–1360.
Article PubMed PubMed Central Google Scholar
Jiang, T., et al. (2025). Drivers of centrosome abnormalities: Senescence progression and tumor immune escape. Seminars in Cancer Biology, 110, 56–64.
Bakhoum, S. F. (2023). Targeting the undruggable. Science, 380(6640), 47.
Ermini, L., et al. (2023). Cancer progression: A single cell perspective. European Review for Medical and Pharmacological Sciences, 27(12), 5721–5747.
Baghban, R., et al. (2020). Tumor microenvironment complexity and therapeutic implications at a glance. Cell Communication and Signaling: CCS, 18(1), 59.
Article PubMed PubMed Central Google Scholar
Smith, J., et al. (2010). The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer. Advances in Cancer Research, 108, 73–112.
Gorodetska, I., Kozeretska, I., & Dubrovska, A. (2019). BRCA genes: The role in genome stability, cancer stemness and therapy resistance. Journal of Cancer, 10(9), 2109–2127.
Article PubMed PubMed Central Google Scholar
Angele, S., & Hall, J. (2000). The ATM gene and breast cancer: Is it really a risk factor? Mutation Research, 462(2–3), 167–178.
Zhang, M., et al. (2017). TP53 mutation-mediated genomic instability induces the evolution of chemoresistance and recurrence in epithelial ovarian cancer. Diagnostic Pathology, 12(1), 16.
Article PubMed PubMed Central Google Scholar
Dodson, H., et al. (2004). Centrosome amplification induced by DNA damage occurs during a prolonged G2 phase and involves ATM. EMBO Journal, 23(19), 3864–3873.
Article PubMed PubMed Central Google Scholar
Mullee, L. I., & Morrison, C. G. (2016). Centrosomes in the DNA damage response–the hub outside the centre. Chromosome Research, 24(1), 35–51.
Zhang, X., et al. (2021). Polo-Like Kinase 4’s critical role in cancer development and strategies for Plk4-targeted therapy. Frontiers in Oncology, 11, Article 587554.>
Article PubMed PubMed Central Google Scholar
Gonczy, P. (2015). Centrosomes and cancer: Revisiting a long-standing relationship. Nature Reviews Cancer, 15(11), 639–652.
Wu, J., & Akhmanova, A. (2017). Microtubule-organizing centers. Annual Review of Cell and Developmental Biology, 33, 51–75.
Holland, A. J., Lan, W., & Cleveland, D. W. (2010). Centriole duplication: A lesson in self-control. Cell Cycle, 9(14), 2731–2736.
Article PubMed PubMed Central Google Scholar
Slevin, L. K., et al. (2012). The structure of the plk4 cryptic polo box reveals two tandem polo boxes required for centriole duplication. Structure, 20(11), 1905–1917.
Article PubMed PubMed Central Google Scholar
Lowery, D. M., Lim, D., & Yaffe, M. B. (2005). Structure and function of Polo-like kinases. Oncogene, 24(2), 248–259.
Barr, F. A., Sillje, H. H., & Nigg, E. A. (2004). Polo-like kinases and the orchestration of cell division. Nature Reviews Molecular Cell Biology, 5(6), 429–440.
Lei, Q., et al. (2024). Therapeutic potential of targeting polo-like kinase 4. European Journal of Medicinal Chemistry, 265, Article 116115.
Zitouni, S., et al. (2014). Polo-like kinases: Structural variations lead to multiple functions. Nature Reviews Molecular Cell Biology, 15(7), 433–452.
Sillibourne, J. E., & Bornens, M. (2010). Polo-like kinase 4: The odd one out of the family. Cell Division, 5, 25.
Article PubMed PubMed Central Google Scholar
Hamzah, M., F. Meitinger, and M. Ohta, (2025) PLK4: Master regulator of centriole duplication and its therapeutic potential. Cytoskeleton (Hoboken)
Levinson, N. M. (2018). The multifaceted allosteric regulation of Aurora kinase A. The Biochemical Journal, 475(12), 2025–2042.
Kasera, H. and P. Singh, (2025) Harnessing structure prediction of Polo-Like Kinase 4 for drug repurposing. Cytoskeleton (Hoboken)
Zhao, Y., & Wang, X. (2019). PLK4: A promising target for cancer therapy. Journal of Cancer Research and Clinical Oncology, 145(10), 2413–2422.
Nigg, E. A., & Holland, A. J. (2018). Once and only once: Mechanisms of centriole duplication and their deregulation in disease. Nature Reviews Molecular Cell Biology, 19(5), 297–312.
Article PubMed PubMed Central Google Scholar
Tsou, M. F., & Stearns, T. (2006). Mechanism limiting centrosome duplication to once per cell cycle. Nature, 442(7105), 947–951.
Arquint, C., et al. (2015) STIL binding to Polo-box 3 of PLK4 regulates centriole duplication. Elife 4
Habedanck, R., et al. (2005). The Polo kinase Plk4 functions in centriole duplication. Nature Cell Biology, 7(11), 1140–1146.
Kasera, H., Sanghi, S., & Singh, P. (2025). PLK4 Homodimerization is required for CEP152 centrosome localization and spindle organization. Journal of Molecular Biology, 437(13), Article 169152.
Ohta, M., et al. (2014). Direct interaction of Plk4 with STIL ensures formation of a single procentriole per parental centriole. Nature Communications, 5, 5267.
Comments (0)