Prospects and limitations of NK cell adoptive therapy in clinical applications

Neelapu, S. S., Tummala, S., Kebriaei, P., Wierda, W., Gutierrez, C., Locke, F. L., et al. (2018). Chimeric antigen receptor T-cell therapy—Assessment and management of toxicities. Nature Reviews Clinical Oncology, 15(1), 47–62. https://doi.org/10.1038/nrclinonc.2017.148

Article  CAS  PubMed  Google Scholar 

Gill, S., Maus, M. V., & Porter, D. L. (2016). Chimeric antigen receptor T cell therapy: 25years in the making. Blood Reviews, 30(3), 157–167. https://doi.org/10.1016/j.blre.2015.10.003

Article  CAS  PubMed  Google Scholar 

Ruggeri, L., Capanni, M., Urbani, E., Perruccio, K., Shlomchik, W. D., Tosti, A., et al. (2002). Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science, 295(5562), 2097–2100. https://doi.org/10.1126/science.1068440

Article  CAS  PubMed  Google Scholar 

Curti, A., Ruggeri, L., D’Addio, A., Bontadini, A., Dan, E., Motta, M. R., et al. (2011). Successful transfer of alloreactive haploidentical KIR ligand-mismatched natural killer cells after infusion in elderly high risk acute myeloid leukemia patients. Blood, 118(12), 3273–3279. https://doi.org/10.1182/blood-2011-01-329508

Article  CAS  PubMed  Google Scholar 

Mancusi, A., Ruggeri, L., & Velardi, A. (2016). Haploidentical hematopoietic transplantation for the cure of leukemia: From its biology to clinical translation. Blood, 128(23), 2616–2623. https://doi.org/10.1182/blood-2016-07-730564

Article  CAS  PubMed  Google Scholar 

Bachanova, V., Cooley, S., Defor, T. E., Verneris, M. R., Zhang, B., McKenna, D. H., et al. (2014). Clearance of acute myeloid leukemia by haploidentical natural killer cells is improved using IL-2 diphtheria toxin fusion protein. Blood, 123(25), 3855–3863. https://doi.org/10.1182/blood-2013-10-532531

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vivier, E., Artis, D., Colonna, M., Diefenbach, A., Di Santo, J. P., Eberl, G., et al. (2018). Innate lymphoid cells: 10 Years On. Cell, 174(5), 1054–1066. https://doi.org/10.1016/j.cell.2018.07.017

Article  CAS  PubMed  Google Scholar 

Curio, S., & Belz, G. T. (2022). The unique role of innate lymphoid cells in cancer and the hepatic microenvironment. Cellular & Molecular Immunology, 19(9), 1012–1029. https://doi.org/10.1038/s41423-022-00901-1

Article  CAS  Google Scholar 

Quatrini, L., Della Chiesa, M., Sivori, S., Mingari, M. C., Pende, D., & Moretta, L. (2021). Human NK cells, their receptors and function. European Journal of Immunology, 51(7), 1566–1579. https://doi.org/10.1002/eji.202049028

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu, J., Freud, A. G., & Caligiuri, M. A. (2013). Location and cellular stages of natural killer cell development. Trends in Immunology, 34(12), 573–582. https://doi.org/10.1016/j.it.2013.07.005

Article  CAS  PubMed  Google Scholar 

Di Santo, J. P., Lim, A. I., & Yssel, H. (2017). ‘ILC-poiesis’: generating tissue ILCs from naïve precursors. Oncotarget, 8(47), 81729–81730. https://doi.org/10.18632/oncotarget.21046

Björkström, N. K., Ljunggren, H. G., & Michaëlsson, J. (2016). Emerging insights into natural killer cells in human peripheral tissues. Nature Reviews Immunology, 16(5), 310–320. https://doi.org/10.1038/nri.2016.34

Article  CAS  PubMed  Google Scholar 

Cooper, M. A., Fehniger, T. A., Turner, S. C., Chen, K. S., Ghaheri, B. A., Ghayur, T., et al. (2001). Human natural killer cells: A unique innate immunoregulatory role for the CD56bright subset. Blood, 97(10), 3146–3151. https://doi.org/10.1182/blood.v97.10.3146

Article  CAS  PubMed  Google Scholar 

Jacobs, R., Hintzen, G., Kemper, A., Beul, K., Kempf, S., Behrens, G., et al. (2001). CD56bright cells differ in their KIR repertoire and cytotoxic features from CD56dim NK cells. European Journal of Immunology, 31(10), 3121–3127. https://doi.org/10.1002/1521-4141(2001010)31:10

Article  CAS  PubMed  Google Scholar 

Prager, I., Liesche, C., van Ooijen, H., Urlaub, D., Verron, Q., Sandström, N., et al. (2019). NK cells switch from granzyme B to death receptor-mediated cytotoxicity during serial killing. Journal of Experimental Medicine, 216(9), 2113–2127. https://doi.org/10.1084/jem.20181454

Article  CAS  PubMed  PubMed Central  Google Scholar 

Horowitz, A., Strauss-Albee, D. M., Leipold, M., Kubo, J., Nemat-Gorgani, N., Dogan, O. C., et al. (2013). Genetic and environmental determinants of human NK cell diversity revealed by mass cytometry. Science Translational Medicine, 5(208), 208ra145. https://doi.org/10.1126/scitranslmed.3006702

Vivier, E., Raulet, D. H., Moretta, A., Caligiuri, M. A., Zitvogel, L., Lanier, L. L., et al. (2011). Innate or adaptive immunity? The example of natural killer cells. Science, 331(6013), 44–49. https://doi.org/10.1126/science.1198687

Article  CAS  PubMed  PubMed Central  Google Scholar 

Strauss-Albee, D. M., Fukuyama, J., Liang, E. C., Yao, Y., Jarrell, J. A., Drake, A. L., et al. (2015). Human NK cell repertoire diversity reflects immune experience and correlates with viral susceptibility. Science Translational Medicine, 7(297), 297ra115. https://doi.org/10.1126/scitranslmed.aac5722

Freud, A. G., Mundy-Bosse, B. L., Yu, J., & Caligiuri, M. A. (2017). The broad spectrum of human natural killer cell diversity. Immunity, 47(5), 820–833. https://doi.org/10.1016/j.immuni.2017.10.008

Article  CAS  PubMed  PubMed Central  Google Scholar 

O’Leary, J. G., Goodarzi, M., Drayton, D. L., & von Andrian, U. H. (2006). T cell- and B cell-independent adaptive immunity mediated by natural killer cells. Nature Immunology, 7(5), 507–516. https://doi.org/10.1038/ni1332

Article  CAS  PubMed  Google Scholar 

Sun, J. C., Beilke, J. N., & Lanier, L. L. (2009). Adaptive immune features of natural killer cells. Nature, 457(7229), 557–561. https://doi.org/10.1038/nature07665

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gumá, M., Angulo, A., Vilches, C., Gómez-Lozano, N., Malats, N., & López-Botet, M. (2004). Imprint of human cytomegalovirus infection on the NK cell receptor repertoire. Blood, 104(12), 3664–3671. https://doi.org/10.1182/blood-2004-05-2058

Article  CAS  PubMed  Google Scholar 

Lopez-Vergès, S., Milush, J. M., Schwartz, B. S., Pando, M. J., Jarjoura, J., York, V. A., et al. (2011). Expansion of a unique CD57⁺NKG2Chi natural killer cell subset during acute human cytomegalovirus infection. Proceedings of the National Academy of Sciences of the United States of America, 108(36), 14725–14732. https://doi.org/10.1073/pnas.1110900108

Article  PubMed  PubMed Central  Google Scholar 

Foley, B., Cooley, S., Verneris, M. R., Pitt, M., Curtsinger, J., Luo, X., et al. (2012). Cytomegalovirus reactivation after allogeneic transplantation promotes a lasting increase in educated NKG2C+ natural killer cells with potent function. Blood, 119(11), 2665–2674. https://doi.org/10.1182/blood-2011-10-386995

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jamieson, A. M., Isnard, P., Dorfman, J. R., Coles, M. C., & Raulet, D. H. (2004). Turnover and proliferation of NK cells in steady state and lymphopenic conditions. Journal of Immunology, 172(2), 864–870. https://doi.org/10.4049/jimmunol.172.2.864

Article  CAS  Google Scholar 

Mujal, A. M., Delconte, R. B., & Sun, J. C. (2021). Natural killer cells: From innate to adaptive features. Annual Review of Immunology, 39, 417–447. https://doi.org/10.1146/annurev-immunol-101819-074948

Article  CAS  PubMed  Google Scholar 

Jost, S., Lucar, O., Lee, E., Yoder, T., Kroll, K., Sugawara, S., et al. (2023). Antigen-specific memory NK cell responses against HIV and influenza use the NKG2/HLA-E axis. Science Immunology, 8(90), eadi3974. https://doi.org/10.1126/sciimmunol.adi3974

Guo, C., Wu, M., Huang, B., Zhao, R., Jin, L., Fu, B., et al. (2022). Single-cell transcriptomics reveal a unique memory-like NK cell subset that accumulates with ageing and correlates with disease severity in COVID-19. Genome Medicine, 14(1), 46. https://doi.org/10.1186/s13073-022-01049-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Camarasa, T. M. N., Torné, J., Chevalier, C., Rasid, O., & Hamon, M. A. (2023). Streptococcus pneumoniae drives specific and lasting Natural Killer cell memory. Public Library of Science Pathogens, 19(7), Article e1011159. https://doi.org/10.1371/journal.ppat.1011159

Article  CAS 

Comments (0)

No login
gif