Neelapu, S. S., Tummala, S., Kebriaei, P., Wierda, W., Gutierrez, C., Locke, F. L., et al. (2018). Chimeric antigen receptor T-cell therapy—Assessment and management of toxicities. Nature Reviews Clinical Oncology, 15(1), 47–62. https://doi.org/10.1038/nrclinonc.2017.148
Article CAS PubMed Google Scholar
Gill, S., Maus, M. V., & Porter, D. L. (2016). Chimeric antigen receptor T cell therapy: 25years in the making. Blood Reviews, 30(3), 157–167. https://doi.org/10.1016/j.blre.2015.10.003
Article CAS PubMed Google Scholar
Ruggeri, L., Capanni, M., Urbani, E., Perruccio, K., Shlomchik, W. D., Tosti, A., et al. (2002). Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science, 295(5562), 2097–2100. https://doi.org/10.1126/science.1068440
Article CAS PubMed Google Scholar
Curti, A., Ruggeri, L., D’Addio, A., Bontadini, A., Dan, E., Motta, M. R., et al. (2011). Successful transfer of alloreactive haploidentical KIR ligand-mismatched natural killer cells after infusion in elderly high risk acute myeloid leukemia patients. Blood, 118(12), 3273–3279. https://doi.org/10.1182/blood-2011-01-329508
Article CAS PubMed Google Scholar
Mancusi, A., Ruggeri, L., & Velardi, A. (2016). Haploidentical hematopoietic transplantation for the cure of leukemia: From its biology to clinical translation. Blood, 128(23), 2616–2623. https://doi.org/10.1182/blood-2016-07-730564
Article CAS PubMed Google Scholar
Bachanova, V., Cooley, S., Defor, T. E., Verneris, M. R., Zhang, B., McKenna, D. H., et al. (2014). Clearance of acute myeloid leukemia by haploidentical natural killer cells is improved using IL-2 diphtheria toxin fusion protein. Blood, 123(25), 3855–3863. https://doi.org/10.1182/blood-2013-10-532531
Article CAS PubMed PubMed Central Google Scholar
Vivier, E., Artis, D., Colonna, M., Diefenbach, A., Di Santo, J. P., Eberl, G., et al. (2018). Innate lymphoid cells: 10 Years On. Cell, 174(5), 1054–1066. https://doi.org/10.1016/j.cell.2018.07.017
Article CAS PubMed Google Scholar
Curio, S., & Belz, G. T. (2022). The unique role of innate lymphoid cells in cancer and the hepatic microenvironment. Cellular & Molecular Immunology, 19(9), 1012–1029. https://doi.org/10.1038/s41423-022-00901-1
Quatrini, L., Della Chiesa, M., Sivori, S., Mingari, M. C., Pende, D., & Moretta, L. (2021). Human NK cells, their receptors and function. European Journal of Immunology, 51(7), 1566–1579. https://doi.org/10.1002/eji.202049028
Article CAS PubMed PubMed Central Google Scholar
Yu, J., Freud, A. G., & Caligiuri, M. A. (2013). Location and cellular stages of natural killer cell development. Trends in Immunology, 34(12), 573–582. https://doi.org/10.1016/j.it.2013.07.005
Article CAS PubMed Google Scholar
Di Santo, J. P., Lim, A. I., & Yssel, H. (2017). ‘ILC-poiesis’: generating tissue ILCs from naïve precursors. Oncotarget, 8(47), 81729–81730. https://doi.org/10.18632/oncotarget.21046
Björkström, N. K., Ljunggren, H. G., & Michaëlsson, J. (2016). Emerging insights into natural killer cells in human peripheral tissues. Nature Reviews Immunology, 16(5), 310–320. https://doi.org/10.1038/nri.2016.34
Article CAS PubMed Google Scholar
Cooper, M. A., Fehniger, T. A., Turner, S. C., Chen, K. S., Ghaheri, B. A., Ghayur, T., et al. (2001). Human natural killer cells: A unique innate immunoregulatory role for the CD56bright subset. Blood, 97(10), 3146–3151. https://doi.org/10.1182/blood.v97.10.3146
Article CAS PubMed Google Scholar
Jacobs, R., Hintzen, G., Kemper, A., Beul, K., Kempf, S., Behrens, G., et al. (2001). CD56bright cells differ in their KIR repertoire and cytotoxic features from CD56dim NK cells. European Journal of Immunology, 31(10), 3121–3127. https://doi.org/10.1002/1521-4141(2001010)31:10
Article CAS PubMed Google Scholar
Prager, I., Liesche, C., van Ooijen, H., Urlaub, D., Verron, Q., Sandström, N., et al. (2019). NK cells switch from granzyme B to death receptor-mediated cytotoxicity during serial killing. Journal of Experimental Medicine, 216(9), 2113–2127. https://doi.org/10.1084/jem.20181454
Article CAS PubMed PubMed Central Google Scholar
Horowitz, A., Strauss-Albee, D. M., Leipold, M., Kubo, J., Nemat-Gorgani, N., Dogan, O. C., et al. (2013). Genetic and environmental determinants of human NK cell diversity revealed by mass cytometry. Science Translational Medicine, 5(208), 208ra145. https://doi.org/10.1126/scitranslmed.3006702
Vivier, E., Raulet, D. H., Moretta, A., Caligiuri, M. A., Zitvogel, L., Lanier, L. L., et al. (2011). Innate or adaptive immunity? The example of natural killer cells. Science, 331(6013), 44–49. https://doi.org/10.1126/science.1198687
Article CAS PubMed PubMed Central Google Scholar
Strauss-Albee, D. M., Fukuyama, J., Liang, E. C., Yao, Y., Jarrell, J. A., Drake, A. L., et al. (2015). Human NK cell repertoire diversity reflects immune experience and correlates with viral susceptibility. Science Translational Medicine, 7(297), 297ra115. https://doi.org/10.1126/scitranslmed.aac5722
Freud, A. G., Mundy-Bosse, B. L., Yu, J., & Caligiuri, M. A. (2017). The broad spectrum of human natural killer cell diversity. Immunity, 47(5), 820–833. https://doi.org/10.1016/j.immuni.2017.10.008
Article CAS PubMed PubMed Central Google Scholar
O’Leary, J. G., Goodarzi, M., Drayton, D. L., & von Andrian, U. H. (2006). T cell- and B cell-independent adaptive immunity mediated by natural killer cells. Nature Immunology, 7(5), 507–516. https://doi.org/10.1038/ni1332
Article CAS PubMed Google Scholar
Sun, J. C., Beilke, J. N., & Lanier, L. L. (2009). Adaptive immune features of natural killer cells. Nature, 457(7229), 557–561. https://doi.org/10.1038/nature07665
Article CAS PubMed PubMed Central Google Scholar
Gumá, M., Angulo, A., Vilches, C., Gómez-Lozano, N., Malats, N., & López-Botet, M. (2004). Imprint of human cytomegalovirus infection on the NK cell receptor repertoire. Blood, 104(12), 3664–3671. https://doi.org/10.1182/blood-2004-05-2058
Article CAS PubMed Google Scholar
Lopez-Vergès, S., Milush, J. M., Schwartz, B. S., Pando, M. J., Jarjoura, J., York, V. A., et al. (2011). Expansion of a unique CD57⁺NKG2Chi natural killer cell subset during acute human cytomegalovirus infection. Proceedings of the National Academy of Sciences of the United States of America, 108(36), 14725–14732. https://doi.org/10.1073/pnas.1110900108
Article PubMed PubMed Central Google Scholar
Foley, B., Cooley, S., Verneris, M. R., Pitt, M., Curtsinger, J., Luo, X., et al. (2012). Cytomegalovirus reactivation after allogeneic transplantation promotes a lasting increase in educated NKG2C+ natural killer cells with potent function. Blood, 119(11), 2665–2674. https://doi.org/10.1182/blood-2011-10-386995
Article CAS PubMed PubMed Central Google Scholar
Jamieson, A. M., Isnard, P., Dorfman, J. R., Coles, M. C., & Raulet, D. H. (2004). Turnover and proliferation of NK cells in steady state and lymphopenic conditions. Journal of Immunology, 172(2), 864–870. https://doi.org/10.4049/jimmunol.172.2.864
Mujal, A. M., Delconte, R. B., & Sun, J. C. (2021). Natural killer cells: From innate to adaptive features. Annual Review of Immunology, 39, 417–447. https://doi.org/10.1146/annurev-immunol-101819-074948
Article CAS PubMed Google Scholar
Jost, S., Lucar, O., Lee, E., Yoder, T., Kroll, K., Sugawara, S., et al. (2023). Antigen-specific memory NK cell responses against HIV and influenza use the NKG2/HLA-E axis. Science Immunology, 8(90), eadi3974. https://doi.org/10.1126/sciimmunol.adi3974
Guo, C., Wu, M., Huang, B., Zhao, R., Jin, L., Fu, B., et al. (2022). Single-cell transcriptomics reveal a unique memory-like NK cell subset that accumulates with ageing and correlates with disease severity in COVID-19. Genome Medicine, 14(1), 46. https://doi.org/10.1186/s13073-022-01049-3
Article CAS PubMed PubMed Central Google Scholar
Camarasa, T. M. N., Torné, J., Chevalier, C., Rasid, O., & Hamon, M. A. (2023). Streptococcus pneumoniae drives specific and lasting Natural Killer cell memory. Public Library of Science Pathogens, 19(7), Article e1011159. https://doi.org/10.1371/journal.ppat.1011159
Comments (0)