Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74:229–63.
Kexin S, Lin L, Rongshou Z, Siwei Z, Hongmei Z, Shaoming W, et al. Trends in incidence rates, mortality rates, and age-period-cohort effects of female breast cancer — China, 2003–2017. China CDC Weekly. 2023;5:340–6.
McBee MP, Awan OA, Colucci AT, Ghobadi CW, Kadom N, Kansagra AP, et al. Deep Learning in radiology. Acad Radiol. 2018;25:1472–80.
Avanzo M, Wei L, Stancanello J, Vallières M, Rao A, Morin O, et al. Machine and deep learning methods for radiomics. Med Phys. 2020;47:e185–202.
Chan HP, Samala RK, Hadjiiski LM, Zhou C. Deep learning in medical image analysis. Adv Exp Med Biol. 2020;1213:3–21.
Article PubMed PubMed Central Google Scholar
Aggarwal R, Sounderajah V, Martin G, Ting DSW, Karthikesalingam A, King D, et al. Diagnostic accuracy of deep learning in medical imaging: a systematic review and meta-analysis. NPJ Digit Med. 2021;4:65.
Article PubMed PubMed Central Google Scholar
Becker AS, Mueller M, Stoffel E, Marcon M, Ghafoor S, Boss A. Classification of breast cancer in ultrasound imaging using a generic deep learning analysis software: a pilot study. Br J Radiol. 2018;91:20170576.
Article PubMed PubMed Central Google Scholar
Byra M, Galperin M, Ojeda-Fournier H, Olson L, O’Boyle M, Comstock C, et al. Breast mass classification in sonography with transfer learning using a deep convolutional neural network and color conversion. Med Phys. 2019;46:746–55.
Article PubMed PubMed Central Google Scholar
Fujioka T, Kubota K, Mori M, Kikuchi Y, Katsuta L, Kasahara M, et al. Distinction between benign and malignant breast masses at breast ultrasound using deep learning method with convolutional neural network. Jpn J Radiol. 2019;37:466–72.
Han S, Kang HK, Jeong JY, Park MH, Kim W, Bang WC, et al. A deep learning framework for supporting the classification of breast lesions in ultrasound images. Phys Med Biol. 2017;62:7714–28.
Hizukuri A, Nakayama R. Computer-aided diagnosis scheme for determining histological classification of breast lesions on ultrasonographic images using convolutional neural network. Diagnostics (Basel). 2018;8:48.
Qi X, Zhang L, Chen Y, Pi Y, Chen Y, Lv Q, et al. Automated diagnosis of breast ultrasonography images using deep neural networks. Med Image Anal. 2019;52:185–98.
Qian X, Pei J, Zheng H, Xie X, Yan L, Zhang H, et al. Prospective assessment of breast cancer risk from multimodal multiview ultrasound images via clinically applicable deep learning. Nat Biomed Eng. 2021;5:522–32.
Tanaka H, Chiu SW, Watanabe T, Kaoku S, Yamaguchi T. Computer-aided diagnosis system for breast ultrasound images using deep learning. Phys Med Biol. 2019;64: 235013.
Pfob A, Sidey-Gibbons C, Barr RG, Duda V, Alwafai Z, Balleyguier C, et al. Intelligent multi-modal shear wave elastography to reduce unnecessary biopsies in breast cancer diagnosis (INSPiRED 002): a retrospective, international, multicentre analysis. Eur J Cancer. 2022;177:1–14.
Lai YC, Chen HH, Hsu JF, Hong YJ, Chiu TT, Chiou HJ. Evaluation of physician performance using a concurrent-read artificial intelligence system to support breast ultrasound interpretation. Breast. 2022;65:124–35.
Article PubMed PubMed Central Google Scholar
Rajpurkar P, Lungren MP. The current and future state of AI interpretation of medical images. N Engl J Med. 2023;388:1981–90.
Gu Y, Xu W, Lin B, An X, Tian J, Ran H, et al. Deep learning based on ultrasound images assists breast lesion diagnosis in China: a multicenter diagnostic study. Insights Imaging. 2022;13:124.
Article PubMed PubMed Central Google Scholar
Shen Y, Shamout FE, Oliver JR, Witowski J, Kannan K, Park J, et al. Artificial intelligence system reduces false-positive findings in the interpretation of breast ultrasound exams. Nat Commun. 2021;12:5645.
Article CAS PubMed PubMed Central Google Scholar
Du R, Chen Y, Li T, Shi L, Fei Z, Li Y. Discrimination of breast cancer based on ultrasound images and convolutional neural network. J Oncol. 2022;2022:7733583.
Article PubMed PubMed Central Google Scholar
Xu Z, Wang Y, Chen M, Zhang Q. Multi-region radiomics for artificially intelligent diagnosis of breast cancer using multimodal ultrasound. Comput Biol Med. 2022;149: 105920.
Chen C, Wang Y, Niu J, Liu X, Li Q, Gong X. Domain knowledge powered deep learning for breast cancer diagnosis based on contrast-enhanced ultrasound videos. IEEE Trans Med Imaging. 2021;40:2439–51.
Wang Q, Chen H, Luo G, Li B, Shang H, Shao H, et al. Performance of novel deep learning network with the incorporation of the automatic segmentation network for diagnosis of breast cancer in automated breast ultrasound. Eur Radiol. 2022;32:7163–72.
Zhao C, Xiao M, Ma L, Ye X, Deng J, Cui L, et al. Enhancing performance of breast ultrasound in opportunistic screening women by a deep learning-based system: a multicenter prospective study. Front Oncol. 2022;12: 804632.
Article PubMed PubMed Central Google Scholar
Zhang P, Zhang M, Lu M, Jin C, Wang G, Lin X. Comparative analysis of the diagnostic value of S-detect technology in different planes versus the BI-RADS classification for breast lesions. Acad Radiol. 2025;32:58–66.
Zhu Y, Zhan W, Jia X, Liu J, Zhou J. Clinical application of computer-aided diagnosis for breast ultrasonography: factors that lead to discordant results in radial and antiradial planes. Cancer Manage Res. 2022;14:751–60.
Liang YP, Zhang J, Zhou P, Zhao YF, Liu WG, Shi YF. Evaluation of the quadri-planes method in computer-aided diagnosis of breast lesions by ultrasonography: prospective single-center study. JMIR Med Inf. 2020;8(5): e18251.
Li WB, Du ZC, Liu YJ, Gao JX, Wang JG, Dai Q, et al. Prediction of axillary lymph node metastasis in early breast cancer patients with ultrasonic videos based deep learning. Front Oncol. 2023;13:1219838.
Article PubMed PubMed Central Google Scholar
Ren S, He K, Girshick R, Sun J. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell. 2017;39:1137–49.
He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016. https://doi.org/10.1109/CVPR.2016.90
Lin TY, Dollar P, Girshick R, He K, Hariharan B, Belongie S, editors. Feature Pyramid Networks for Object Detection. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2017. https://doi.org/10.1109/CVPR.2017.106.
Carreira J, Zisserman A, editors. Quo vadis, action recognition? a new model and the kinetics dataset. proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2017. https://doi.org/10.1109/CVPR.2017.502
Lin M, Chen Q, Yan S. Network in network. arXiv e-prints. 2013; arXiv: 1312.4400.
Gao L, Li J, Gu Y, Ma L, Xu W, Tao X, et al. Breast ultrasound in Chinese hospitals: a cross-sectional study of the current status and influencing factors of BI-RADS utilization and diagnostic accuracy. Lancet Reg Health West Pac. 2022;29: 100576.
PubMed PubMed Central Google Scholar
Haug CJ, Drazen JM. Artificial intelligence and machine learning in clinical medicine, 2023. N Engl J Med. 2023;388:1201–8.
Article CAS PubMed Google Scholar
Lokaj B, Pugliese MT, Kinkel K, Lovis C, Schmid J. Barriers and facilitators of artificial intelligence conception and implementation for breast imaging diagnosis in clinical practice: a scoping review. Eur Radiol. 2024;34:2096–109.
Huang R, Ying Q, Lin Z, Zheng Z, Tan L, Tang G, et al. Extracting keyframes of breast ultrasound video using deep reinforcement learning. Med Image Anal. 2022;80: 102490.
Comments (0)