Napabucasin targets resistant triple negative breast cancer through suppressing STAT3 and mitochondrial function

Li RQ, Yan L, Zhang L, Ma HX, Wang HW, Bu P, Xi YF, Lian J (2024) Genomic characterization reveals distinct mutational landscapes and therapeutic implications between different molecular subtypes of triple-negative breast cancer. Sci Rep 14:12386. https://doi.org/10.1038/s41598-024-62991-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee J (2023) Current treatment landscape for early Triple-Negative breast cancer (TNBC). J Clin Med 12. https://doi.org/10.3390/jcm12041524

Zheng HC (2017) The molecular mechanisms of chemoresistance in cancers. Oncotarget 8:59950–59964. https://doi.org/10.18632/oncotarget.19048

Article  PubMed  PubMed Central  Google Scholar 

Foutadakis S, Kordias D, Vatsellas G, Magklara A (2024) Identification of new Chemoresistance-Associated genes in Triple-Negative breast cancer by Single-Cell transcriptomic analysis. Int J Mol Sci 25. https://doi.org/10.3390/ijms25136853

Pavitra E, Kancharla J, Gupta VK, Prasad K, Sung JY, Kim J, Tej MB, Choi R, Lee JH, Han YK, Raju GSR, Bhaskar L, Huh YS (2023) The role of NF-kappaB in breast cancer initiation, growth, metastasis, and resistance to chemotherapy. Biomed pharmacotherapy = Biomedecine Pharmacotherapie 163:114822. https://doi.org/10.1016/j.biopha.2023.114822

Article  CAS  PubMed  Google Scholar 

Qin JJ, Yan L, Zhang J, Zhang WD (2019) STAT3 as a potential therapeutic target in triple negative breast cancer: a systematic review. J Experimental Clin cancer Research: CR 38:195. https://doi.org/10.1186/s13046-019-1206-z

Article  PubMed Central  Google Scholar 

Wegrzyn J, Potla R, Chwae YJ, Sepuri NB, Zhang Q, Koeck T, Derecka M, Szczepanek K, Szelag M, Gornicka A, Moh A, Moghaddas S, Chen Q, Bobbili S, Cichy J, Dulak J, Baker DP, Wolfman A, Stuehr D, Hassan MO, Fu XY, Avadhani N, Drake JI, Fawcett P, Lesnefsky EJ, Larner AC (2009) Function of mitochondrial Stat3 in cellular respiration. Science 323:793–797. https://doi.org/10.1126/science.1164551

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shin MK, Cheong JH (2019) Mitochondria-centric bioenergetic characteristics in cancer stem-like cells. Arch Pharm Res 42:113–127. https://doi.org/10.1007/s12272-019-01127-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Y, Guo D, Zhu Y, Liu L (2024) Inhibition of mitochondrial function by approved drugs overcomes nasopharyngeal carcinoma chemoresistance. Anticancer Drugs 35:317–324. https://doi.org/10.1097/CAD.0000000000001566

Article  CAS  PubMed  Google Scholar 

Li X, Wei Y, Wei X (2020) Napabucasin, a novel inhibitor of STAT3, inhibits growth and synergises with doxorubicin in diffuse large B-cell lymphoma. Cancer Lett 491:146–161. https://doi.org/10.1016/j.canlet.2020.07.032

Article  CAS  PubMed  Google Scholar 

Li Y, Han Q, Zhao H, Guo Q, Zhang J (2020) Napabucasin reduces cancer stem cell characteristics in hepatocellular carcinoma, frontiers in Pharmacology 11. 597520. https://doi.org/10.3389/fphar.2020.597520

Han D, Yu T, Dong N, Wang B, Sun F, Jiang D (2019) Napabucasin, a novel STAT3 inhibitor suppresses proliferation, invasion and stemness of glioblastoma cells. J Experimental Clin cancer Research: CR 38:289. https://doi.org/10.1186/s13046-019-1289-6

Article  CAS  PubMed Central  Google Scholar 

Liu X, Huang J, Xie Y, Zhou Y, Wang R, Lou J (2019) Napabucasin attenuates resistance of breast cancer cells to Tamoxifen by reducing stem Cell-Like properties, medical science monitor: international medical journal of experimental and clinical research 25. 8905–8912. https://doi.org/10.12659/MSM.918384

Yang W, Zhou C, Sun Q, Guan G (2022) Anisomycin inhibits angiogenesis, growth, and survival of triple-negative breast cancer through mitochondrial dysfunction, AMPK activation, and mTOR Inhibition. Can J Physiol Pharmacol 100:612–620. https://doi.org/10.1139/cjpp-2021-0577

Article  CAS  PubMed  Google Scholar 

Ashton JC (2015) Drug combination studies and their synergy quantification using the Chou-Talalay method–letter. Cancer Res 75:2400. https://doi.org/10.1158/0008-5472.CAN-14-3763

Article  CAS  PubMed  Google Scholar 

Nakamura D (2023) The evaluation of tumorigenicity and characterization of colonies in a soft agar colony formation assay using polymerase chain reaction. Sci Rep 13:5405. https://doi.org/10.1038/s41598-023-32442-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hu Y, Dong Z, Liu K (2024) Unraveling the complexity of STAT3 in cancer: molecular Understanding and drug discovery. J Experimental Clin cancer Research: CR 43:23. https://doi.org/10.1186/s13046-024-02949-5

Article  PubMed Central  Google Scholar 

Kang HJ, Yi YW, Hou SJ, Kim HJ, Kong Y, Bae I, Brown ML (2017) Disruption of STAT3-DNMT1 interaction by SH-I-14 induces re-expression of tumor suppressor genes and inhibits growth of triple-negative breast tumor. Oncotarget 8:83457–83468. https://doi.org/10.18632/oncotarget.4054

Article  PubMed  Google Scholar 

Masoud V, Pages G (2017) Targeted therapies in breast cancer: new challenges to fight against resistance. World J Clin Oncol 8:120–134. https://doi.org/10.5306/wjco.v8.i2.120

Article  PubMed  PubMed Central  Google Scholar 

Shao Z, Wang H, Ren H, Sun Y, Chen X (2023) The anticancer effect of Napabucasin (BBI608), a natural naphthoquinone. Molecules 28. https://doi.org/10.3390/molecules28155678

Marzagalli M, Fontana F, Raimondi M, Limonta P (2021) Cancer stem Cells-Key players in tumor relapse. Cancers (Basel) 13. https://doi.org/10.3390/cancers13030376

Marie IJ, Lahiri T, Onder O, Elenitoba-Johnson KSJ, Levy DE (2024) Structural determinants of mitochondrial STAT3 targeting and function. Mitochondrial Commun 2:1–13. https://doi.org/10.1016/j.mitoco.2024.01.001

Article  PubMed  PubMed Central  Google Scholar 

Poli V, Camporeale A (2015) STAT3-Mediated metabolic reprograming in cellular transformation and implications for drug resistance. Front Oncol 5:121. https://doi.org/10.3389/fonc.2015.00121

Article  PubMed  PubMed Central  Google Scholar 

Regua AT, Bindal S, Najjar MK, Zhuang C, Khan M, Arrigo ABJ, Gonzalez AO, Zhang XR, Zhu JJ, Watabe K, Lo HW (2024) Dual Inhibition of the TrkA and JAK2 pathways using entrectinib and Pacritinib suppresses the growth and metastasis of HER2-positive and triple-negative breast cancers. Cancer Lett 597:217023. https://doi.org/10.1016/j.canlet.2024.217023

Article  CAS  PubMed  PubMed Central  Google Scholar 

Froeling FEM, Swamynathan MM, Deschenes A, Chio IIC, Brosnan E, Yao MA, Alagesan P, Lucito M, Li J, Chang AY, Trotman LC, Belleau P, Park Y, Rogoff HA, Watson JD, Tuveson DA (2019) Bioactivation of Napabucasin triggers reactive oxygen Species-Mediated cancer cell death. Clin Cancer Res 25:7162–7174. 10.1158/1078-0432.CCR-19-0302.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif