Li RQ, Yan L, Zhang L, Ma HX, Wang HW, Bu P, Xi YF, Lian J (2024) Genomic characterization reveals distinct mutational landscapes and therapeutic implications between different molecular subtypes of triple-negative breast cancer. Sci Rep 14:12386. https://doi.org/10.1038/s41598-024-62991-3
Article CAS PubMed PubMed Central Google Scholar
Lee J (2023) Current treatment landscape for early Triple-Negative breast cancer (TNBC). J Clin Med 12. https://doi.org/10.3390/jcm12041524
Zheng HC (2017) The molecular mechanisms of chemoresistance in cancers. Oncotarget 8:59950–59964. https://doi.org/10.18632/oncotarget.19048
Article PubMed PubMed Central Google Scholar
Foutadakis S, Kordias D, Vatsellas G, Magklara A (2024) Identification of new Chemoresistance-Associated genes in Triple-Negative breast cancer by Single-Cell transcriptomic analysis. Int J Mol Sci 25. https://doi.org/10.3390/ijms25136853
Pavitra E, Kancharla J, Gupta VK, Prasad K, Sung JY, Kim J, Tej MB, Choi R, Lee JH, Han YK, Raju GSR, Bhaskar L, Huh YS (2023) The role of NF-kappaB in breast cancer initiation, growth, metastasis, and resistance to chemotherapy. Biomed pharmacotherapy = Biomedecine Pharmacotherapie 163:114822. https://doi.org/10.1016/j.biopha.2023.114822
Article CAS PubMed Google Scholar
Qin JJ, Yan L, Zhang J, Zhang WD (2019) STAT3 as a potential therapeutic target in triple negative breast cancer: a systematic review. J Experimental Clin cancer Research: CR 38:195. https://doi.org/10.1186/s13046-019-1206-z
Article PubMed Central Google Scholar
Wegrzyn J, Potla R, Chwae YJ, Sepuri NB, Zhang Q, Koeck T, Derecka M, Szczepanek K, Szelag M, Gornicka A, Moh A, Moghaddas S, Chen Q, Bobbili S, Cichy J, Dulak J, Baker DP, Wolfman A, Stuehr D, Hassan MO, Fu XY, Avadhani N, Drake JI, Fawcett P, Lesnefsky EJ, Larner AC (2009) Function of mitochondrial Stat3 in cellular respiration. Science 323:793–797. https://doi.org/10.1126/science.1164551
Article CAS PubMed PubMed Central Google Scholar
Shin MK, Cheong JH (2019) Mitochondria-centric bioenergetic characteristics in cancer stem-like cells. Arch Pharm Res 42:113–127. https://doi.org/10.1007/s12272-019-01127-y
Article CAS PubMed PubMed Central Google Scholar
Zhang Y, Guo D, Zhu Y, Liu L (2024) Inhibition of mitochondrial function by approved drugs overcomes nasopharyngeal carcinoma chemoresistance. Anticancer Drugs 35:317–324. https://doi.org/10.1097/CAD.0000000000001566
Article CAS PubMed Google Scholar
Li X, Wei Y, Wei X (2020) Napabucasin, a novel inhibitor of STAT3, inhibits growth and synergises with doxorubicin in diffuse large B-cell lymphoma. Cancer Lett 491:146–161. https://doi.org/10.1016/j.canlet.2020.07.032
Article CAS PubMed Google Scholar
Li Y, Han Q, Zhao H, Guo Q, Zhang J (2020) Napabucasin reduces cancer stem cell characteristics in hepatocellular carcinoma, frontiers in Pharmacology 11. 597520. https://doi.org/10.3389/fphar.2020.597520
Han D, Yu T, Dong N, Wang B, Sun F, Jiang D (2019) Napabucasin, a novel STAT3 inhibitor suppresses proliferation, invasion and stemness of glioblastoma cells. J Experimental Clin cancer Research: CR 38:289. https://doi.org/10.1186/s13046-019-1289-6
Article CAS PubMed Central Google Scholar
Liu X, Huang J, Xie Y, Zhou Y, Wang R, Lou J (2019) Napabucasin attenuates resistance of breast cancer cells to Tamoxifen by reducing stem Cell-Like properties, medical science monitor: international medical journal of experimental and clinical research 25. 8905–8912. https://doi.org/10.12659/MSM.918384
Yang W, Zhou C, Sun Q, Guan G (2022) Anisomycin inhibits angiogenesis, growth, and survival of triple-negative breast cancer through mitochondrial dysfunction, AMPK activation, and mTOR Inhibition. Can J Physiol Pharmacol 100:612–620. https://doi.org/10.1139/cjpp-2021-0577
Article CAS PubMed Google Scholar
Ashton JC (2015) Drug combination studies and their synergy quantification using the Chou-Talalay method–letter. Cancer Res 75:2400. https://doi.org/10.1158/0008-5472.CAN-14-3763
Article CAS PubMed Google Scholar
Nakamura D (2023) The evaluation of tumorigenicity and characterization of colonies in a soft agar colony formation assay using polymerase chain reaction. Sci Rep 13:5405. https://doi.org/10.1038/s41598-023-32442-6
Article CAS PubMed PubMed Central Google Scholar
Hu Y, Dong Z, Liu K (2024) Unraveling the complexity of STAT3 in cancer: molecular Understanding and drug discovery. J Experimental Clin cancer Research: CR 43:23. https://doi.org/10.1186/s13046-024-02949-5
Article PubMed Central Google Scholar
Kang HJ, Yi YW, Hou SJ, Kim HJ, Kong Y, Bae I, Brown ML (2017) Disruption of STAT3-DNMT1 interaction by SH-I-14 induces re-expression of tumor suppressor genes and inhibits growth of triple-negative breast tumor. Oncotarget 8:83457–83468. https://doi.org/10.18632/oncotarget.4054
Masoud V, Pages G (2017) Targeted therapies in breast cancer: new challenges to fight against resistance. World J Clin Oncol 8:120–134. https://doi.org/10.5306/wjco.v8.i2.120
Article PubMed PubMed Central Google Scholar
Shao Z, Wang H, Ren H, Sun Y, Chen X (2023) The anticancer effect of Napabucasin (BBI608), a natural naphthoquinone. Molecules 28. https://doi.org/10.3390/molecules28155678
Marzagalli M, Fontana F, Raimondi M, Limonta P (2021) Cancer stem Cells-Key players in tumor relapse. Cancers (Basel) 13. https://doi.org/10.3390/cancers13030376
Marie IJ, Lahiri T, Onder O, Elenitoba-Johnson KSJ, Levy DE (2024) Structural determinants of mitochondrial STAT3 targeting and function. Mitochondrial Commun 2:1–13. https://doi.org/10.1016/j.mitoco.2024.01.001
Article PubMed PubMed Central Google Scholar
Poli V, Camporeale A (2015) STAT3-Mediated metabolic reprograming in cellular transformation and implications for drug resistance. Front Oncol 5:121. https://doi.org/10.3389/fonc.2015.00121
Article PubMed PubMed Central Google Scholar
Regua AT, Bindal S, Najjar MK, Zhuang C, Khan M, Arrigo ABJ, Gonzalez AO, Zhang XR, Zhu JJ, Watabe K, Lo HW (2024) Dual Inhibition of the TrkA and JAK2 pathways using entrectinib and Pacritinib suppresses the growth and metastasis of HER2-positive and triple-negative breast cancers. Cancer Lett 597:217023. https://doi.org/10.1016/j.canlet.2024.217023
Article CAS PubMed PubMed Central Google Scholar
Froeling FEM, Swamynathan MM, Deschenes A, Chio IIC, Brosnan E, Yao MA, Alagesan P, Lucito M, Li J, Chang AY, Trotman LC, Belleau P, Park Y, Rogoff HA, Watson JD, Tuveson DA (2019) Bioactivation of Napabucasin triggers reactive oxygen Species-Mediated cancer cell death. Clin Cancer Res 25:7162–7174. 10.1158/1078-0432.CCR-19-0302.
Comments (0)