Keeton AB, Salter EA, Piazza GA (2017) The RAS–effector interaction as a drug target. Cancer Res 77(2):221–226
Article CAS PubMed PubMed Central Google Scholar
Parkin DM (2006) The global health burden of infection-associated cancers in the year 2002. Int J Cancer 118(12):3030–3044
Article CAS PubMed Google Scholar
Almasmoum H (2021) Characterization of mucin 2 expression in colorectal Cancer with and without chemotherapies. Vivo Vitr Study JUQUMS 7:18–22
Meng M et al (2021) The current Understanding on the impact of KRAS on colorectal cancer. Biomed Pharmacother 140:111717
Article CAS PubMed Google Scholar
Lam KK, Wong SH, Cheah PY (2023) Targeting the ‘undruggable’driver protein, KRAS, in epithelial cancers: current perspective. Cells 12(4):631
Article CAS PubMed PubMed Central Google Scholar
Wennerberg K, Rossman KL, Der CJ (2005) The Ras superfamily at a glance. J Cell Sci 118(5):843–846
Article CAS PubMed Google Scholar
Ahearn IM et al (2012) Regulating the regulator: post-translational modification of RAS. Nat Rev Mol Cell Biol 13(1):39–51
Chen J et al (2021) Mutation-induced impacts on the switch transformations of the GDP-and GTP-bound K-ras: insights from multiple replica Gaussian accelerated molecular dynamics and free energy analysis. J Chem Inf Model 61(4):1954–1969
Article CAS PubMed Google Scholar
Milburn MV et al (1990) Molecular switch for signal transduction: structural differences between active and inactive forms of protooncogenic Ras proteins. Science 247(4945):939–945
Article CAS PubMed Google Scholar
Fernández-Medarde A, Santos E (2011) Ras in cancer and developmental diseases. Genes cancer 2(3):344–358
Article PubMed PubMed Central Google Scholar
Westcott PM, To MD (2013) The genetics and biology of KRAS in lung cancer. Chin J cancer 32(2):63
Article CAS PubMed PubMed Central Google Scholar
Eberhard DA et al (2005) Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non–small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. J Clin Oncol 23(25):5900–5909
Article CAS PubMed Google Scholar
Brünger A et al (1990) Crystal structure of an active form of RAS protein, a complex of a GTP analog and the HRAS p21 catalytic domain. Proc Natl Acad Sci 87(12):4849–4853
Article PubMed PubMed Central Google Scholar
Mainardi S et al (2018) SHP2 is required for growth of KRAS-mutant non-small-cell lung cancer in vivo. Nat Med 24(7):961–967
Article CAS PubMed Google Scholar
Massarelli E et al (2007) KRAS mutation is an important predictor of resistance to therapy with epidermal growth factor receptor tyrosine kinase inhibitors in non–small-cell lung cancer. Clin Cancer Res 13(10):2890–2896
Article CAS PubMed Google Scholar
Chang Y-S et al (2010) Detection of N-, H-, and KRAS codons 12, 13, and 61 mutations with universal RAS primer multiplex PCR and N-, H-, and KRAS-specific primer extension. Clin Biochem 43(3):296–301
Article CAS PubMed Google Scholar
Yang M-J et al (2009) The KRAS mutation is highly correlated with EGFR alterations in patients with non-small cell lung cancer. Fooyin J Health Sci 1(2):65–71
Zhou H et al (2021) Sensitive detection of KRAS mutations by clustered regularly interspaced short palindromic repeats. Diagnostics 11(1):125
Article CAS PubMed PubMed Central Google Scholar
Santos E et al (1984) Malignant activation of a K-ras oncogene in lung carcinoma but not in normal tissue of the same patient. Science 223(4637):661–664
Article CAS PubMed Google Scholar
Hobbs GA, Der CJ, Rossman KL (2016) RAS isoforms and mutations in cancer at a glance. J Cell Sci 129(7):1287–1292
Article CAS PubMed PubMed Central Google Scholar
Stolze B et al (2015) Comparative analysis of KRAS codon 12, 13, 18, 61 and 117 mutations using human MCF10A isogenic cell lines. Sci Rep 5(1):8535
Article CAS PubMed PubMed Central Google Scholar
Tate JG et al (2019) COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res 47(D1):D941–D947
Article CAS PubMed Google Scholar
Seeburg PH et al (1984) Biological properties of human c-Ha-ras 1 genes mutated at codon 12. Nature 312(5989):71–75
Article CAS PubMed Google Scholar
Gorfe AA, Grant BJ, McCammon JA (2008) Mapping the nucleotide and isoform-dependent structural and dynamical features of Ras proteins. Structure 16(6):885–896
Article CAS PubMed PubMed Central Google Scholar
Rudack T et al (2021) The Ras dimer structure. Chem Sci 12(23):8178–8189
Article CAS PubMed PubMed Central Google Scholar
Bourne HR, Sanders DA, McCormick F (1991) The GTPase superfamily: conserved structure and molecular mechanism. Nature 349(6305):117–127
Article CAS PubMed Google Scholar
Gupta AK et al (2019) Multi-target, ensemble‐based virtual screening yields novel allosteric KRAS inhibitors at high success rate, vol 94. Chemical biology & drug design, pp 1441–1456. 2
Steffen CL et al (2023) Eliminating oncogenic RAS: back to the future at the drawing board. Biochem Soc Trans 51(1):447–456
Article CAS PubMed PubMed Central Google Scholar
Maurer T et al (2012) Small-molecule ligands bind to a distinct pocket in Ras and inhibit SOS-mediated nucleotide exchange activity. Proc Natl Acad Sci 109(14):5299–5304
Article CAS PubMed PubMed Central Google Scholar
Shima F et al (2013) In Silico discovery of small-molecule Ras inhibitors that display antitumor activity by blocking the Ras–effector interaction. Proc Natl Acad Sci 110(20):8182–8187
Article CAS PubMed PubMed Central Google Scholar
Xie C et al (2017) Identification of a new potent inhibitor targeting KRAS in non-small cell lung cancer cells. Front Pharmacol 8:823
Article PubMed PubMed Central Google Scholar
McCarthy MJ et al (2019) Discovery of high-affinity noncovalent allosteric KRAS inhibitors that disrupt effector binding. ACS Omega 4(2):2921–2930
Comments (0)