Seol Y, Zhang H, Agama K, Lorence N, Pommier Y, Neuman KC (2015) single-molecule supercoil relaxation assay as a screening tool to determine the mechanism and efficacy of human topoisomerase IB inhibitors. Mol Cancer Ther 14(11):2552–2559. https://doi.org/10.1158/1535-7163.MCT-15-0454
Article CAS PubMed PubMed Central Google Scholar
Hsiang YH, Hertzberg R, Hecht S, Liu LF (1985) Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J Biol Chem 260(27):14873–14878
Article CAS PubMed Google Scholar
Staker BL, Hjerrild K, Feese MD, Behnke CA, Burgin AB Jr, Stewart L (2002) The mechanism of topoisomerase I poisoning by a camptothecin analog. Proc Natl Acad Sci U S A 99(24):15387–15392. https://doi.org/10.1073/pnas.242259599
Article CAS PubMed PubMed Central Google Scholar
Wu J, Yin MB, Hapke G, Toth K, Rustum YM (2002) Induction of biphasic DNA double strand breaks and activation of multiple repair protein complexes by DNA topoisomerase I drug 7-ethyl-10-hydroxy-camptothecin. Mol Pharmacol 61(4):742–748. https://doi.org/10.1124/mol.61.4.742
Article CAS PubMed Google Scholar
Caserini C, Pratesi G, Tortoreto M, Bedogne B, Carenini N, Supino R et al (1997) Apoptosis as a determinant of tumor sensitivity to topotecan in human ovarian tumors: preclinical in vitro/in vivo studies. Clin Cancer Res 3(6):955–961
Burke TG, Mi Z (1994) The structural basis of camptothecin interactions with human serum albumin: impact on drug stability. J Med Chem 37(1):40–46. https://doi.org/10.1021/jm00027a005
Article CAS PubMed Google Scholar
Covey JM, Jaxel C, Kohn KW, Pommier Y (1989) Protein-linked DNA strand breaks induced in mammalian cells by camptothecin, an inhibitor of topoisomerase I. Cancer Res 49(18):5016–5022
Brangi M, Litman T, Ciotti M, Nishiyama K, Kohlhagen G, Takimoto C et al (1999) Camptothecin resistance: role of the ATP-binding cassette (ABC), mitoxantrone-resistance half-transporter (MXR), and potential for glucuronidation in MXR-expressing cells. Cancer Res 59(23):5938–5946
Seiter K (2005) Toxicity of the topoisomerase I inhibitors. Expert Opin Drug Saf 4(1):45–53. https://doi.org/10.1517/14740338.4.1.45
Article CAS PubMed Google Scholar
Strumberg D, Pommier Y, Paull K, Jayaraman M, Nagafuji P, Cushman M (1999) Synthesis of cytotoxic indenoisoquinoline topoisomerase I poisons. J Med Chem 42(3):446–457. https://doi.org/10.1021/jm9803323
Article CAS PubMed Google Scholar
Antony S, Jayaraman M, Laco G, Kohlhagen G, Kohn KW, Cushman M, Pommier Y (2003) Differential induction of topoisomerase I-DNA cleavage complexes by the indenoisoquinoline MJ-III-65 (NSC 706744) and camptothecin: base sequence analysis and activity against camptothecin-resistant topoisomerases I. Cancer Res 63(21):7428–7435
Antony S, Agama KK, Miao ZH, Takagi K, Wright MH, Robles AI et al (2007) Novel indenoisoquinolines NSC 725776 and NSC 724998 produce persistent topoisomerase I cleavage complexes and overcome multidrug resistance. Cancer Res 67(21):10397–10405. https://doi.org/10.1158/0008-5472.CAN-07-0938
Article CAS PubMed Google Scholar
Cushman M (2021) Design and synthesis of indenoisoquinolines targeting topoisomerase I and other biological macromolecules for cancer chemotherapy. J Med Chem 64(24):17572–17600. https://doi.org/10.1021/acs.jmedchem.1c01491
Article CAS PubMed Google Scholar
Antony S, Kohlhagen G, Agama K, Jayaraman M, Cao S, Durrani FA et al (2005) Cellular topoisomerase I inhibition and antiproliferative activity by MJ-III-65 (NSC 706744), an indenoisoquinoline topoisomerase I poison. Mol Pharmacol 67(2):523–530. https://doi.org/10.1124/mol.104.003889
Article CAS PubMed Google Scholar
Kinders RJ, Hollingshead M, Lawrence S, Ji J, Tabb B, Bonner WM et al (2010) Development of a validated immunofluorescence assay for gammaH2AX as a pharmacodynamic marker of topoisomerase I inhibitor activity. Clin Cancer Res 16(22):5447–5457. https://doi.org/10.1158/1078-0432.CCR-09-3076
Article CAS PubMed PubMed Central Google Scholar
Burton JH, Mazcko C, LeBlanc A, Covey JM, Ji J, Kinders RJ et al (2018) NCI comparative oncology program testing of non-camptothecin indenoisoquinoline topoisomerase I inhibitors in naturally occurring canine lymphoma. Clin Cancer Res 24(23):5830–5840. https://doi.org/10.1158/1078-0432.CCR-18-1498
Article CAS PubMed PubMed Central Google Scholar
Kummar S, Chen A, Gutierrez M, Pfister TD, Wang L, Redon C et al (2016) Clinical and pharmacologic evaluation of two dosing schedules of indotecan (LMP400), a novel indenoisoquinoline, in patients with advanced solid tumors. Cancer Chemother Pharmacol 78(1):73–81. https://doi.org/10.1007/s00280-016-2998-6
Article CAS PubMed PubMed Central Google Scholar
Westhorpe R, Roske JJ, Yeeles JTP (2024) Mechanisms controlling replication fork stalling and collapse at topoisomerase 1 cleavage complexes. Mol Cell 84(18):3469-3481 e3467. https://doi.org/10.1016/j.molcel.2024.08.004
Article CAS PubMed PubMed Central Google Scholar
Wilsker DF, Barrett AM, Dull AB, Lawrence SM, Hollingshead MG, Chen A et al (2019) Evaluation of pharmacodynamic responses to cancer therapeutic agents using DNA damage markers. Clin Cancer Res 25(10):3084–3095. https://doi.org/10.1158/1078-0432.Ccr-18-2523
Article CAS PubMed PubMed Central Google Scholar
Huang X, Traganos F, Darzynkiewicz Z (2003) DNA damage induced by DNA topoisomerase I- and topoisomerase II-inhibitors detected by histone H2AX phosphorylation in relation to the cell cycle phase and apoptosis. Cell Cycle 2(6):614–619
Article CAS PubMed Google Scholar
Kurose A, Tanaka T, Huang X, Halicka HD, Traganos F, Dai W, Darzynkiewicz Z (2005) Assessment of ATM phosphorylation on Ser-1981 induced by DNA topoisomerase I and II inhibitors in relation to Ser-139-histone H2AX phosphorylation, cell cycle phase, and apoptosis. Cytometry A 68(1):1–9. https://doi.org/10.1002/cyto.a.20186
Tanaka T, Kurose A, Huang X, Dai W, Darzynkiewicz Z (2006) ATM activation and histone H2AX phosphorylation as indicators of DNA damage by DNA topoisomerase I inhibitor topotecan and during apoptosis. Cell Prolif 39(1):49–60. https://doi.org/10.1111/j.1365-2184.2006.00364.x
Article CAS PubMed PubMed Central Google Scholar
Magni M, Ruscica V, Restelli M, Fontanella E, Buscemi G, Zannini L (2015) CCAR2/DBC1 is required for Chk2-dependent KAP1 phosphorylation and repair of DNA damage. Oncotarget 6(19):17817–17831. https://doi.org/10.18632/oncotarget.4417
Article PubMed PubMed Central Google Scholar
White DE, Negorev D, Peng H, Ivanov AV, Maul GG, Rauscher FJ 3rd (2006) KAP1, a novel substrate for PIKK family members, colocalizes with numerous damage response factors at DNA lesions. Cancer Res 66(24):11594–11599. https://doi.org/10.1158/0008-5472.CAN-06-4138
Article CAS PubMed Google Scholar
Kobayashi J, Antoccia A, Tauchi H, Matsuura S, Komatsu K (2004) NBS1 and its functional role in the DNA damage response. DNA Repair (Amst) 3(8–9):855–861. https://doi.org/10.1016/j.dnarep.2004.03.023
Article CAS PubMed Google Scholar
Chatterjee G, Jimenez-Sainz J, Presti T, Nguyen T, Jensen RB (2016) Distinct binding of BRCA2 BRC repeats to RAD51 generates differential DNA damage sensitivity. Nucleic Acids Res 44(11):5256–5270. https://doi.org/10.1093/nar/gkw242
Article CAS PubMed PubMed Central Google Scholar
Tarsounas M, Davies AA, West SC (2004) RAD51 localization and activation following DNA damage. Philos Trans R Soc Lond B Biol Sci 359(1441):87–93. https://doi.org/10.1098/rstb.2003.1368
Comments (0)