Phase 1 studies of the indenoisoquinolines LMP776 and LMP744 in patients with solid tumors and lymphomas

Seol Y, Zhang H, Agama K, Lorence N, Pommier Y, Neuman KC (2015) single-molecule supercoil relaxation assay as a screening tool to determine the mechanism and efficacy of human topoisomerase IB inhibitors. Mol Cancer Ther 14(11):2552–2559. https://doi.org/10.1158/1535-7163.MCT-15-0454

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hsiang YH, Hertzberg R, Hecht S, Liu LF (1985) Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J Biol Chem 260(27):14873–14878

Article  CAS  PubMed  Google Scholar 

Staker BL, Hjerrild K, Feese MD, Behnke CA, Burgin AB Jr, Stewart L (2002) The mechanism of topoisomerase I poisoning by a camptothecin analog. Proc Natl Acad Sci U S A 99(24):15387–15392. https://doi.org/10.1073/pnas.242259599

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu J, Yin MB, Hapke G, Toth K, Rustum YM (2002) Induction of biphasic DNA double strand breaks and activation of multiple repair protein complexes by DNA topoisomerase I drug 7-ethyl-10-hydroxy-camptothecin. Mol Pharmacol 61(4):742–748. https://doi.org/10.1124/mol.61.4.742

Article  CAS  PubMed  Google Scholar 

Caserini C, Pratesi G, Tortoreto M, Bedogne B, Carenini N, Supino R et al (1997) Apoptosis as a determinant of tumor sensitivity to topotecan in human ovarian tumors: preclinical in vitro/in vivo studies. Clin Cancer Res 3(6):955–961

CAS  PubMed  Google Scholar 

Burke TG, Mi Z (1994) The structural basis of camptothecin interactions with human serum albumin: impact on drug stability. J Med Chem 37(1):40–46. https://doi.org/10.1021/jm00027a005

Article  CAS  PubMed  Google Scholar 

Covey JM, Jaxel C, Kohn KW, Pommier Y (1989) Protein-linked DNA strand breaks induced in mammalian cells by camptothecin, an inhibitor of topoisomerase I. Cancer Res 49(18):5016–5022

CAS  PubMed  Google Scholar 

Brangi M, Litman T, Ciotti M, Nishiyama K, Kohlhagen G, Takimoto C et al (1999) Camptothecin resistance: role of the ATP-binding cassette (ABC), mitoxantrone-resistance half-transporter (MXR), and potential for glucuronidation in MXR-expressing cells. Cancer Res 59(23):5938–5946

CAS  PubMed  Google Scholar 

Seiter K (2005) Toxicity of the topoisomerase I inhibitors. Expert Opin Drug Saf 4(1):45–53. https://doi.org/10.1517/14740338.4.1.45

Article  CAS  PubMed  Google Scholar 

Strumberg D, Pommier Y, Paull K, Jayaraman M, Nagafuji P, Cushman M (1999) Synthesis of cytotoxic indenoisoquinoline topoisomerase I poisons. J Med Chem 42(3):446–457. https://doi.org/10.1021/jm9803323

Article  CAS  PubMed  Google Scholar 

Antony S, Jayaraman M, Laco G, Kohlhagen G, Kohn KW, Cushman M, Pommier Y (2003) Differential induction of topoisomerase I-DNA cleavage complexes by the indenoisoquinoline MJ-III-65 (NSC 706744) and camptothecin: base sequence analysis and activity against camptothecin-resistant topoisomerases I. Cancer Res 63(21):7428–7435

CAS  PubMed  Google Scholar 

Antony S, Agama KK, Miao ZH, Takagi K, Wright MH, Robles AI et al (2007) Novel indenoisoquinolines NSC 725776 and NSC 724998 produce persistent topoisomerase I cleavage complexes and overcome multidrug resistance. Cancer Res 67(21):10397–10405. https://doi.org/10.1158/0008-5472.CAN-07-0938

Article  CAS  PubMed  Google Scholar 

Cushman M (2021) Design and synthesis of indenoisoquinolines targeting topoisomerase I and other biological macromolecules for cancer chemotherapy. J Med Chem 64(24):17572–17600. https://doi.org/10.1021/acs.jmedchem.1c01491

Article  CAS  PubMed  Google Scholar 

Antony S, Kohlhagen G, Agama K, Jayaraman M, Cao S, Durrani FA et al (2005) Cellular topoisomerase I inhibition and antiproliferative activity by MJ-III-65 (NSC 706744), an indenoisoquinoline topoisomerase I poison. Mol Pharmacol 67(2):523–530. https://doi.org/10.1124/mol.104.003889

Article  CAS  PubMed  Google Scholar 

Kinders RJ, Hollingshead M, Lawrence S, Ji J, Tabb B, Bonner WM et al (2010) Development of a validated immunofluorescence assay for gammaH2AX as a pharmacodynamic marker of topoisomerase I inhibitor activity. Clin Cancer Res 16(22):5447–5457. https://doi.org/10.1158/1078-0432.CCR-09-3076

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burton JH, Mazcko C, LeBlanc A, Covey JM, Ji J, Kinders RJ et al (2018) NCI comparative oncology program testing of non-camptothecin indenoisoquinoline topoisomerase I inhibitors in naturally occurring canine lymphoma. Clin Cancer Res 24(23):5830–5840. https://doi.org/10.1158/1078-0432.CCR-18-1498

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kummar S, Chen A, Gutierrez M, Pfister TD, Wang L, Redon C et al (2016) Clinical and pharmacologic evaluation of two dosing schedules of indotecan (LMP400), a novel indenoisoquinoline, in patients with advanced solid tumors. Cancer Chemother Pharmacol 78(1):73–81. https://doi.org/10.1007/s00280-016-2998-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Westhorpe R, Roske JJ, Yeeles JTP (2024) Mechanisms controlling replication fork stalling and collapse at topoisomerase 1 cleavage complexes. Mol Cell 84(18):3469-3481 e3467. https://doi.org/10.1016/j.molcel.2024.08.004

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wilsker DF, Barrett AM, Dull AB, Lawrence SM, Hollingshead MG, Chen A et al (2019) Evaluation of pharmacodynamic responses to cancer therapeutic agents using DNA damage markers. Clin Cancer Res 25(10):3084–3095. https://doi.org/10.1158/1078-0432.Ccr-18-2523

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang X, Traganos F, Darzynkiewicz Z (2003) DNA damage induced by DNA topoisomerase I- and topoisomerase II-inhibitors detected by histone H2AX phosphorylation in relation to the cell cycle phase and apoptosis. Cell Cycle 2(6):614–619

Article  CAS  PubMed  Google Scholar 

Kurose A, Tanaka T, Huang X, Halicka HD, Traganos F, Dai W, Darzynkiewicz Z (2005) Assessment of ATM phosphorylation on Ser-1981 induced by DNA topoisomerase I and II inhibitors in relation to Ser-139-histone H2AX phosphorylation, cell cycle phase, and apoptosis. Cytometry A 68(1):1–9. https://doi.org/10.1002/cyto.a.20186

Article  PubMed  Google Scholar 

Tanaka T, Kurose A, Huang X, Dai W, Darzynkiewicz Z (2006) ATM activation and histone H2AX phosphorylation as indicators of DNA damage by DNA topoisomerase I inhibitor topotecan and during apoptosis. Cell Prolif 39(1):49–60. https://doi.org/10.1111/j.1365-2184.2006.00364.x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Magni M, Ruscica V, Restelli M, Fontanella E, Buscemi G, Zannini L (2015) CCAR2/DBC1 is required for Chk2-dependent KAP1 phosphorylation and repair of DNA damage. Oncotarget 6(19):17817–17831. https://doi.org/10.18632/oncotarget.4417

Article  PubMed  PubMed Central  Google Scholar 

White DE, Negorev D, Peng H, Ivanov AV, Maul GG, Rauscher FJ 3rd (2006) KAP1, a novel substrate for PIKK family members, colocalizes with numerous damage response factors at DNA lesions. Cancer Res 66(24):11594–11599. https://doi.org/10.1158/0008-5472.CAN-06-4138

Article  CAS  PubMed  Google Scholar 

Kobayashi J, Antoccia A, Tauchi H, Matsuura S, Komatsu K (2004) NBS1 and its functional role in the DNA damage response. DNA Repair (Amst) 3(8–9):855–861. https://doi.org/10.1016/j.dnarep.2004.03.023

Article  CAS  PubMed  Google Scholar 

Chatterjee G, Jimenez-Sainz J, Presti T, Nguyen T, Jensen RB (2016) Distinct binding of BRCA2 BRC repeats to RAD51 generates differential DNA damage sensitivity. Nucleic Acids Res 44(11):5256–5270. https://doi.org/10.1093/nar/gkw242

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tarsounas M, Davies AA, West SC (2004) RAD51 localization and activation following DNA damage. Philos Trans R Soc Lond B Biol Sci 359(1441):87–93. https://doi.org/10.1098/rstb.2003.1368

Article  CAS 

Comments (0)

No login
gif