Choi W, Lee ES (2022) Therapeutic Targeting of DNA Damage Response in Cancer. Int J Mol Sci. https://doi.org/10.3390/ijms23031701
Article PubMed PubMed Central Google Scholar
Karati D, Mahadik KR, Trivedi P, Kumar D (2022) Alkylating agents, the road less traversed, changing anticancer therapy. Anticancer Agents Med Chem 22(8):1478–1495. https://doi.org/10.2174/1871520621666210811105344
Article CAS PubMed Google Scholar
Zhang C, Xu C, Gao X, Yao Q (2022) Platinum-based drugs for cancer therapy and anti-tumor strategies. Theranostics 12(5):2115–2132. https://doi.org/10.7150/thno.69424
Article CAS PubMed PubMed Central Google Scholar
Yakkala PA, Penumallu NR, Shafi S, Kamal A (2023) Prospects of Topoisomerase Inhibitors as Promising Anti-Cancer Agents. Pharmaceuticals (Basel). https://doi.org/10.3390/ph16101456
Venugopal S, Sharma V, Mehra A, Singh I, Singh G (2022) DNA intercalators as anticancer agents. Chem Biol Drug Des 100(4):580–598. https://doi.org/10.1111/cbdd.14116
Article CAS PubMed Google Scholar
Groelly FJ, Fawkes M, Dagg RA, Blackford AN, Tarsounas M (2023) Targeting DNA damage response pathways in cancer. Nat Rev Cancer 23(2):78–94. https://doi.org/10.1038/s41568-022-00535-5
Article CAS PubMed Google Scholar
Watanabe K, Seki N (2024) Biology and Development of DNA-Targeted Drugs, Focusing on Synthetic Lethality, DNA Repair, and Epigenetic Modifications for Cancer: A Review. Int J Mol Sci. https://doi.org/10.3390/ijms25020752
Article PubMed PubMed Central Google Scholar
Li M, Kao E, Gao X, Sandig H, Limmer K, Pavon-Eternod M, Jones TE, Landry S, Pan T, Weitzman MD, David M (2012) Codon-usage-based Inhibition of HIV protein synthesis by human Schlafen 11. Nature 491(7422):125–128. https://doi.org/10.1038/nature11433
Article CAS PubMed PubMed Central Google Scholar
Zoppoli G, Regairaz M, Leo E, Reinhold WC, Varma S, Ballestrero A, Doroshow JH, Pommier Y (2012) Putative DNA/RNA helicase Schlafen-11 (SLFN11) sensitizes cancer cells to DNA-damaging agents. Proc Natl Acad Sci U S A 109(37):15030–15035. https://doi.org/10.1073/pnas.1205943109
Article PubMed PubMed Central Google Scholar
Jo U, Pommier Y (2022) Structural, molecular, and functional insights into Schlafen proteins. Exp Mol Med 54(6):730–738. https://doi.org/10.1038/s12276-022-00794-0
Article CAS PubMed PubMed Central Google Scholar
Hou P, Hao W, Qin B, Li M, Zhao R, Cui S (2023) Structural and biochemical characterization of Schlafen11 N-terminal domain. Nucleic Acids Res 51(13):7053–7070. https://doi.org/10.1093/nar/gkad509
Article CAS PubMed PubMed Central Google Scholar
Metzner FJ, Wenzl SJ, Kugler M, Krebs S, Hopfner KP, Lammens K (2022) Mechanistic Understanding of human SLFN11. Nat Commun 13(1):5464. https://doi.org/10.1038/s41467-022-33123-0
Article CAS PubMed PubMed Central Google Scholar
Kugler M, Metzner FJ, Witte G, Hopfner KP, Lammens K (2024) Phosphorylation-mediated conformational change regulates human SLFN11. Nat Commun 15(1):10500. https://doi.org/10.1038/s41467-024-54833-7
Article CAS PubMed PubMed Central Google Scholar
Podvalnaya N, Bronkhorst AW, Lichtenberger R, Hellmann S, Nischwitz E, Falk T, Karaulanov E, Butter F, Falk S, Ketting RF (2023) PiRNA processing by a trimeric Schlafen-domain nuclease. Nature 622(7982):402–409. https://doi.org/10.1038/s41586-023-06588-2
Article CAS PubMed PubMed Central Google Scholar
Murai J, Thomas A, Miettinen M, Pommier Y (2019) Schlafen 11 (SLFN11), a restriction factor for replicative stress induced by DNA-targeting anti-cancer therapies. Pharmacol Ther 201:94–102. https://doi.org/10.1016/j.pharmthera.2019.05.009
Article CAS PubMed PubMed Central Google Scholar
Tang SW, Thomas A, Murai J, Trepel JB, Bates SE, Rajapakse VN, Pommier Y (2018) Overcoming resistance to DNA-Targeted agents by epigenetic activation of Schlafen 11 (SLFN11) expression with class I histone deacetylase inhibitors. Clin Cancer Res 24(8):1944–1953. https://doi.org/10.1158/1078-0432.Ccr-17-0443
Article CAS PubMed PubMed Central Google Scholar
Takashima T, Sakamoto N, Murai J, Taniyama D, Honma R, Ukai S, Maruyama R, Kuraoka K, Rajapakse VN, Pommier Y, Yasui W (2020) Immunohistochemical analysis of SLFN11 expression uncovers potential non-responders to DNA-damaging agents overlooked by tissue RNA-seq. Virchows Arch 478(3):569–579. https://doi.org/10.1007/s00428-020-02840-6
Article CAS PubMed PubMed Central Google Scholar
Kaczorowski M, Ylaya K, Chłopek M, Taniyama D, Pommier Y, Lasota J, Miettinen M (2024) Immunohistochemical evaluation of Schlafen 11 (SLFN11) expression in Cancer in the search of Biomarker-Informed treatment targets: A study of 127 entities represented by 6658 tumors. Am J Surg Pathol. https://doi.org/10.1097/pas.0000000000002299
Nogales V, Reinhold WC, Varma S, Martinez-Cardus A, Moutinho C, Moran S, Heyn H, Sebio A, Barnadas A, Pommier Y, Esteller M (2016) Epigenetic inactivation of the putative DNA/RNA helicase SLFN11 in human cancer confers resistance to platinum drugs. Oncotarget 7(3):3084–3097. https://doi.org/10.18632/oncotarget.6413
Kaur S, Schwartz AL, Jordan DG, Soto-Pantoja DR, Kuo B, Elkahloun AG, Mathews Griner L, Thomas CJ, Ferrer M, Thomas A, Tang SW, Rajapakse VN, Pommier Y, Roberts DD (2019) Identification of Schlafen-11 as a target of CD47 signaling that regulates sensitivity to ionizing radiation and topoisomerase inhibitors. Front Oncol 9:994. https://doi.org/10.3389/fonc.2019.00994
Article PubMed PubMed Central Google Scholar
Gardner EE, Lok BH, Schneeberger VE, Desmeules P, Miles LA, Arnold PK, Ni A, Khodos I, de Stanchina E, Nguyen T, Sage J, Campbell JE, Ribich S, Rekhtman N, Dowlati A, Massion PP, Rudin CM, Poirier JT (2017) Chemosensitive relapse in small cell lung Cancer proceeds through an EZH2-SLFN11 Axis. Cancer Cell 31(2):286–299. https://doi.org/10.1016/j.ccell.2017.01.006
Article CAS PubMed PubMed Central Google Scholar
Yin YP, Ma LY, Cao GZ, Hua JH, Lv XT, Lin WC (2022) FK228 potentiates Topotecan activity against small cell lung cancer cells via induction of SLFN11. Acta Pharmacol Sin 43(8):2119–2127. https://doi.org/10.1038/s41401-021-00817-y
Article CAS PubMed Google Scholar
Maréchal A, Zou L (2015) RPA-coated single-stranded DNA as a platform for post-translational modifications in the DNA damage response. Cell Res 25(1):9–23. https://doi.org/10.1038/cr.2014.147
Article CAS PubMed Google Scholar
Murai J, Tang SW, Leo E, Baechler SA, Redon CE, Zhang H, Al Abo M, Rajapakse VN, Nakamura E, Jenkins LMM, Aladjem MI, Pommier Y (2018) SLFN11 blocks stressed replication forks independently of ATR. Mol Cell 69(3):371–384e376. https://doi.org/10.1016/j.molcel.2018.01.012
Article CAS PubMed PubMed Central Google Scholar
Mu Y, Lou J, Srivastava M, Zhao B, Feng XH, Liu T, Chen J, Huang J (2016) SLFN11 inhibits checkpoint maintenance and homologous recombination repair. EMBO Rep 17(1):94–109. https://doi.org/10.15252/embr.201540964
Article CAS PubMed Google Scholar
Onji H, Tate S, Sakaue T, Fujiwara K, Nakano S, Kawaida M, Onishi N, Matsumoto T, Yamagami W, Sugiyama T, Higashiyama S, Pommier Y, Kobayashi Y, Murai J (2024) Schlafen 11 further sensitizes BRCA-deficient cells to PARP inhibitors through single-strand DNA gap accumulation behind replication forks. Oncogene 43(32):2475–2489. https://doi.org/10.1038/s41388-024-03094-1
Comments (0)