From predictive biomarker to therapeutic target: the dual role of SLFN11 in chemotherapy sensitivity

Choi W, Lee ES (2022) Therapeutic Targeting of DNA Damage Response in Cancer. Int J Mol Sci. https://doi.org/10.3390/ijms23031701

Article  PubMed  PubMed Central  Google Scholar 

Karati D, Mahadik KR, Trivedi P, Kumar D (2022) Alkylating agents, the road less traversed, changing anticancer therapy. Anticancer Agents Med Chem 22(8):1478–1495. https://doi.org/10.2174/1871520621666210811105344

Article  CAS  PubMed  Google Scholar 

Zhang C, Xu C, Gao X, Yao Q (2022) Platinum-based drugs for cancer therapy and anti-tumor strategies. Theranostics 12(5):2115–2132. https://doi.org/10.7150/thno.69424

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yakkala PA, Penumallu NR, Shafi S, Kamal A (2023) Prospects of Topoisomerase Inhibitors as Promising Anti-Cancer Agents. Pharmaceuticals (Basel). https://doi.org/10.3390/ph16101456

Article  PubMed  Google Scholar 

Venugopal S, Sharma V, Mehra A, Singh I, Singh G (2022) DNA intercalators as anticancer agents. Chem Biol Drug Des 100(4):580–598. https://doi.org/10.1111/cbdd.14116

Article  CAS  PubMed  Google Scholar 

Groelly FJ, Fawkes M, Dagg RA, Blackford AN, Tarsounas M (2023) Targeting DNA damage response pathways in cancer. Nat Rev Cancer 23(2):78–94. https://doi.org/10.1038/s41568-022-00535-5

Article  CAS  PubMed  Google Scholar 

Watanabe K, Seki N (2024) Biology and Development of DNA-Targeted Drugs, Focusing on Synthetic Lethality, DNA Repair, and Epigenetic Modifications for Cancer: A Review. Int J Mol Sci. https://doi.org/10.3390/ijms25020752

Article  PubMed  PubMed Central  Google Scholar 

Li M, Kao E, Gao X, Sandig H, Limmer K, Pavon-Eternod M, Jones TE, Landry S, Pan T, Weitzman MD, David M (2012) Codon-usage-based Inhibition of HIV protein synthesis by human Schlafen 11. Nature 491(7422):125–128. https://doi.org/10.1038/nature11433

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zoppoli G, Regairaz M, Leo E, Reinhold WC, Varma S, Ballestrero A, Doroshow JH, Pommier Y (2012) Putative DNA/RNA helicase Schlafen-11 (SLFN11) sensitizes cancer cells to DNA-damaging agents. Proc Natl Acad Sci U S A 109(37):15030–15035. https://doi.org/10.1073/pnas.1205943109

Article  PubMed  PubMed Central  Google Scholar 

Jo U, Pommier Y (2022) Structural, molecular, and functional insights into Schlafen proteins. Exp Mol Med 54(6):730–738. https://doi.org/10.1038/s12276-022-00794-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hou P, Hao W, Qin B, Li M, Zhao R, Cui S (2023) Structural and biochemical characterization of Schlafen11 N-terminal domain. Nucleic Acids Res 51(13):7053–7070. https://doi.org/10.1093/nar/gkad509

Article  CAS  PubMed  PubMed Central  Google Scholar 

Metzner FJ, Wenzl SJ, Kugler M, Krebs S, Hopfner KP, Lammens K (2022) Mechanistic Understanding of human SLFN11. Nat Commun 13(1):5464. https://doi.org/10.1038/s41467-022-33123-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kugler M, Metzner FJ, Witte G, Hopfner KP, Lammens K (2024) Phosphorylation-mediated conformational change regulates human SLFN11. Nat Commun 15(1):10500. https://doi.org/10.1038/s41467-024-54833-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Podvalnaya N, Bronkhorst AW, Lichtenberger R, Hellmann S, Nischwitz E, Falk T, Karaulanov E, Butter F, Falk S, Ketting RF (2023) PiRNA processing by a trimeric Schlafen-domain nuclease. Nature 622(7982):402–409. https://doi.org/10.1038/s41586-023-06588-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Murai J, Thomas A, Miettinen M, Pommier Y (2019) Schlafen 11 (SLFN11), a restriction factor for replicative stress induced by DNA-targeting anti-cancer therapies. Pharmacol Ther 201:94–102. https://doi.org/10.1016/j.pharmthera.2019.05.009

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tang SW, Thomas A, Murai J, Trepel JB, Bates SE, Rajapakse VN, Pommier Y (2018) Overcoming resistance to DNA-Targeted agents by epigenetic activation of Schlafen 11 (SLFN11) expression with class I histone deacetylase inhibitors. Clin Cancer Res 24(8):1944–1953. https://doi.org/10.1158/1078-0432.Ccr-17-0443

Article  CAS  PubMed  PubMed Central  Google Scholar 

Takashima T, Sakamoto N, Murai J, Taniyama D, Honma R, Ukai S, Maruyama R, Kuraoka K, Rajapakse VN, Pommier Y, Yasui W (2020) Immunohistochemical analysis of SLFN11 expression uncovers potential non-responders to DNA-damaging agents overlooked by tissue RNA-seq. Virchows Arch 478(3):569–579. https://doi.org/10.1007/s00428-020-02840-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kaczorowski M, Ylaya K, Chłopek M, Taniyama D, Pommier Y, Lasota J, Miettinen M (2024) Immunohistochemical evaluation of Schlafen 11 (SLFN11) expression in Cancer in the search of Biomarker-Informed treatment targets: A study of 127 entities represented by 6658 tumors. Am J Surg Pathol. https://doi.org/10.1097/pas.0000000000002299

Article  PubMed  Google Scholar 

Nogales V, Reinhold WC, Varma S, Martinez-Cardus A, Moutinho C, Moran S, Heyn H, Sebio A, Barnadas A, Pommier Y, Esteller M (2016) Epigenetic inactivation of the putative DNA/RNA helicase SLFN11 in human cancer confers resistance to platinum drugs. Oncotarget 7(3):3084–3097. https://doi.org/10.18632/oncotarget.6413

Article  PubMed  Google Scholar 

Kaur S, Schwartz AL, Jordan DG, Soto-Pantoja DR, Kuo B, Elkahloun AG, Mathews Griner L, Thomas CJ, Ferrer M, Thomas A, Tang SW, Rajapakse VN, Pommier Y, Roberts DD (2019) Identification of Schlafen-11 as a target of CD47 signaling that regulates sensitivity to ionizing radiation and topoisomerase inhibitors. Front Oncol 9:994. https://doi.org/10.3389/fonc.2019.00994

Article  PubMed  PubMed Central  Google Scholar 

Gardner EE, Lok BH, Schneeberger VE, Desmeules P, Miles LA, Arnold PK, Ni A, Khodos I, de Stanchina E, Nguyen T, Sage J, Campbell JE, Ribich S, Rekhtman N, Dowlati A, Massion PP, Rudin CM, Poirier JT (2017) Chemosensitive relapse in small cell lung Cancer proceeds through an EZH2-SLFN11 Axis. Cancer Cell 31(2):286–299. https://doi.org/10.1016/j.ccell.2017.01.006

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yin YP, Ma LY, Cao GZ, Hua JH, Lv XT, Lin WC (2022) FK228 potentiates Topotecan activity against small cell lung cancer cells via induction of SLFN11. Acta Pharmacol Sin 43(8):2119–2127. https://doi.org/10.1038/s41401-021-00817-y

Article  CAS  PubMed  Google Scholar 

Maréchal A, Zou L (2015) RPA-coated single-stranded DNA as a platform for post-translational modifications in the DNA damage response. Cell Res 25(1):9–23. https://doi.org/10.1038/cr.2014.147

Article  CAS  PubMed  Google Scholar 

Murai J, Tang SW, Leo E, Baechler SA, Redon CE, Zhang H, Al Abo M, Rajapakse VN, Nakamura E, Jenkins LMM, Aladjem MI, Pommier Y (2018) SLFN11 blocks stressed replication forks independently of ATR. Mol Cell 69(3):371–384e376. https://doi.org/10.1016/j.molcel.2018.01.012

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mu Y, Lou J, Srivastava M, Zhao B, Feng XH, Liu T, Chen J, Huang J (2016) SLFN11 inhibits checkpoint maintenance and homologous recombination repair. EMBO Rep 17(1):94–109. https://doi.org/10.15252/embr.201540964

Article  CAS  PubMed  Google Scholar 

Onji H, Tate S, Sakaue T, Fujiwara K, Nakano S, Kawaida M, Onishi N, Matsumoto T, Yamagami W, Sugiyama T, Higashiyama S, Pommier Y, Kobayashi Y, Murai J (2024) Schlafen 11 further sensitizes BRCA-deficient cells to PARP inhibitors through single-strand DNA gap accumulation behind replication forks. Oncogene 43(32):2475–2489. https://doi.org/10.1038/s41388-024-03094-1

Article 

Comments (0)

No login
gif