Zeng F-G (2022) Celebrating the one millionth cochlear implant. JASA Express Lett 2(7):077201. https://doi.org/10.1121/10.0012825
Holden LK et al (2013) Factors affecting open-set word recognition in adults with cochlear implants. Ear Hear 34(3):342–360. https://doi.org/10.1097/AUD.0b013e3182741aa7
Article PubMed PubMed Central Google Scholar
Caswell-Midwinter B, Doney EM, Arjmandi MK, Jahn KN, Herrmann BS, Arenberg JG (2022) The relationship between impedance, programming and word recognition in a large clinical dataset of cochlear implant recipients. Trends Hear 26:23312165211060984. https://doi.org/10.1177/23312165211060983
Article PubMed PubMed Central Google Scholar
Fowler SL, Calhoun H, Warner-Czyz AD (2021) Music perception and speech-in-noise skills of typical hearing and cochlear implant listeners. Am J Audiol 30(1):170–181
Litvak LM, Spahr AJ, Emadi G (2007) Loudness growth observed under partially tripolar stimulation: model and data from cochlear implant listeners. J Acoust Soc Am 122(2):967–981. https://doi.org/10.1121/1.2749414
Bierer JA, Litvak L (2016) Reducing channel interaction through cochlear implant programming may improve speech perception: current focusing and channel deactivation. Trends Hear 20:2331216516653389. https://doi.org/10.1177/2331216516653389
Article PubMed PubMed Central Google Scholar
Liu Z, Cakir A, Noble JH (2020) Auditory nerve fiber health estimation using patient specific cochlear implant stimulation models. In: Burgos N, Svoboda D, Wolterink JM, Zhao C (eds) Simulation and Synthesis in Medical Imaging. SASHIMI 2020. Lecture Notes in Computer Science, vol 12417. Springer, Cham, pp 184–194. https://doi.org/10.1007/978-3-030-59520-3_19
Dong Y, Briaire JJ, Stronks HC, Frijns JHM (2023) Speech perception performance in cochlear implant recipients correlates to the number and synchrony of excited auditory nerve fibers derived from electrically evoked compound action potentials. Ear Hear 44(2):276–286. https://doi.org/10.1097/AUD.0000000000001279
DeVries L, Arenberg JG (2018) Current focusing to reduce channel interaction for distant electrodes in cochlear implant programs. Trends Hear 22:2331216518813811. https://doi.org/10.1177/2331216518813811
Article PubMed PubMed Central Google Scholar
Noble JH, Gifford RH, Hedley-Williams AJ, Dawant BM, Labadie RF (2014) Clinical evaluation of an image-guided cochlear implant programming strategy. Audiol Neurootol 19(6):400–411. https://doi.org/10.1159/000365273
He S et al (2020) The effect of interphase gap on neural response of the electrically stimulated cochlear nerve in children with cochlear nerve deficiency and children with normal-sized cochlear nerves. Ear Hear 41(4):918–934. https://doi.org/10.1097/AUD.0000000000000815
Article PubMed PubMed Central Google Scholar
Skidmore J, Oleson JJ, Yuan Y, He S (2023) The relationship between cochlear implant speech perception outcomes and electrophysiological measures of the electrically evoked compound action potential. Ear Hear. https://doi.org/10.1097/AUD.0000000000001389
Article PubMed PubMed Central Google Scholar
Schvartz-Leyzac KC, Colesa DJ, Swiderski DL, Raphael Y, Pfingst BE (2023) Cochlear health and cochlear-implant function. J Assoc Res Otolaryngol JARO 24(1):5–29. https://doi.org/10.1007/s10162-022-00882-y
Cheng Y-S, Svirsky MA (2021) Meta-analysis-correlation between spiral ganglion cell counts and speech perception with a cochlear implant. Audiol Res 11(2):220–226. https://doi.org/10.3390/audiolres11020020
Article PubMed PubMed Central Google Scholar
Teymouri J, Hullar TE, Holden TA, Chole RA (2011) Verification of computed tomographic estimates of cochlear implant array position: a micro-CT and histological analysis. Otol Neurotol Off Publ Am Otol Soc Am Neurotol Soc Eur Acad Otol Neurotol 32(6):980
Joshi SN, Dau T, Epp B (2017) A model of electrically stimulated auditory nerve fiber responses with peripheral and central sites of spike generation. J Assoc Res Otolaryngol 18:323–342
Article PubMed PubMed Central Google Scholar
Resnick JM, Rubinstein JT (2021) Simulated auditory fiber myelination heterogeneity desynchronizes population responses to electrical stimulation limiting inter-aural timing difference representation. J Acoust Soc Am 149(2):934–947. https://doi.org/10.1121/10.0003387
Article CAS PubMed PubMed Central Google Scholar
Briaire JJ, Frijns JH (2000) Field patterns in a 3D tapered spiral model of the electrically stimulated cochlea. Hear Res 148(1–2):18–30
Article CAS PubMed Google Scholar
Imennov NS, Rubinstein JT (2009) Stochastic population model for electrical stimulation of the auditory nerve. IEEE Trans Biomed Eng 56(10):2493–2501
Goldwyn JH, Bierer SM, Bierer JA (2010) Modeling the electrode-neuron interface of cochlear implants: effects of neural survival, electrode placement, and the partial tripolar configuration. Hear Res 268(1–2):93–104. https://doi.org/10.1016/j.heares.2010.05.005
Article PubMed PubMed Central Google Scholar
Rubinstein JT (1988) Quasi-static analytical models for electrical stimulation of the auditory nervous system. Dissertation, University of Washington
Potrusil T et al (2020) Finite element analysis and three-dimensional reconstruction of tonotopically aligned human auditory fiber pathways: a computational environment for modeling electrical stimulation by a cochlear implant based on micro-CT. Hear Res 393:108001. https://doi.org/10.1016/j.heares.2020.108001
Dhanasingh A, Jolly CN, Rajan G, Van de Heyning P (2020) Literature review on the distribution of spiral ganglion cell bodies inside the human cochlear central modiolar trunk. J Int Adv Otol 16(1):104
Article PubMed PubMed Central Google Scholar
Peskoff A (1974) Green’s function for Laplace’s equation in an infinite cylindrical cell. J Math Phys 15(12):2112–2120
Rattay F (1999) The basic mechanism for the electrical stimulation of the nervous system. Neuroscience 89(2):335–346
Article CAS PubMed Google Scholar
Miller AL, Arenberg JG, Middlebrooks JC, Pfingst BE (2001) Cochlear implant thresholds: comparison of middle latency responses with psychophysical and cortical-spike-activity thresholds. Hear Res 152(1–2):55–66. https://doi.org/10.1016/s0378-5955(00)00236-7
Article CAS PubMed Google Scholar
Kiang NY, Moxon EC, Levine RA (1970) Auditory-nerve activity in cats with normal and abnormal cochleas. In: Wolstenholme GEW, Knight J (eds) Sensorineural hearing loss. Ciba Foundation, pp 241–73. https://doi.org/10.1002/9780470719756.ch15
Liberman MC, Klang NY-S (1984) Single-neuron labeling and chronic cochlear pathology. IV. Stereocilia damage and alterations in rate-and phase-level functions. Hear Res 16(1):75–90
Article CAS PubMed Google Scholar
DeVries L, Arenberg JG (2018) Psychophysical tuning curves as a correlate of electrode position in cochlear implant listeners. J Assoc Res Otolaryngol JARO 19(5):571–587. https://doi.org/10.1007/s10162-018-0678-4
Jahn KN, Arenberg JG (2019) Evaluating psychophysical polarity sensitivity as an indirect estimate of neural status in cochlear implant listeners. J Assoc Res Otolaryngol JARO 20(4):415–430. https://doi.org/10.1007/s10162-019-00718-2
Badenhorst W, Hanekom T, Gross L, Hanekom JJ (2021) Facial nerve stimulation in a post-meningitic cochlear implant user: using computational modelling as a tool to probe mechanisms and progression of complications on a case-by-case basis. Cochlear Implants Int 22(2):68–79
Sriperumbudur KK, Appali R, Gummer AW, van Rienen U (2024) Understanding the impact of modiolus porosity on stimulation of spiral ganglion neurons by cochlear implants. Sci Rep 14(1):9593
Article CAS PubMed PubMed Central Google Scholar
Söderqvist S, Lamminmäki S, Aarnisalo A, Hirvonen T, Sinkkonen ST, Sivonen V (2021) Intraoperative transimpedance and spread of excitation profile correlations with a lateral-wall cochlear implant electrode array. Hear Res 405:108235
Comments (0)