Dallos P, Cheatham MA (1976) Production of cochlear potentials by inner and outer hair cells. J Acoust Soc Am 60(2):510–512. https://doi.org/10.1121/1.381086
Article CAS PubMed Google Scholar
Eggermont JJ, Ponton CW (2002) The neurophysiology of auditory perception: from single units to evoked potentials. Audiol Neurootol 7(2):71–99. https://doi.org/10.1159/000057656
Lutz BT, Hutson KA, Trecca EMC, Hamby M, Fitzpatrick DC (2022) Neural contributions to the cochlear summating potential: spiking and dendritic components. J Assoc Res Otolaryngol 23(3):351–363. https://doi.org/10.1007/s10162-022-00842-6
Article PubMed PubMed Central Google Scholar
Eggermont J, Schmidt P (1990) The auditory brainstem response. Evoked potential manual: a practical guide to clinical applications. Springer, pp 41–77
Bickford RG, Jacobson JL, Cody DT (1964) Nature of average evoked potentials to sound and other stimuli in man. Ann N Y Acad Sci 112:204–223. https://doi.org/10.1111/j.1749-6632.1964.tb26749.x
Article CAS PubMed Google Scholar
Picton TW (2010) Human auditory evoked potentials. Plural Publishing
Møller AR, Jannetta PJ (1985) Neural generators of the auditory brainstem response. In: Jacobson JT (ed) The auditory brainstem response. College-Hill Press, San Diego, pp 13–31
Jewett DL, Williston JS (1971) Auditory-evoked far fields averaged from the scalp of humans. Brain 94(4):681–696. https://doi.org/10.1093/brain/94.4.681
Article CAS PubMed Google Scholar
Hashimoto I, Ishiyama Y, Yoshimoto T, Nemoto S (1981) Brain-stem auditory-evoked potentials recorded directly from human brain-stem and thalamus. Brain 104(Pt 4):841–859. https://doi.org/10.1093/brain/104.4.841
Article CAS PubMed Google Scholar
Eggermont JJ, Don M, Brackmann DE (1980) Electrocochleography and auditory brainstem electric responses in patients with pontine angle tumors. Ann Otol Rhinol Laryngol Suppl 89(6 Pt 2):1–19. https://doi.org/10.1177/00034894800890s601
Article CAS PubMed Google Scholar
American Academy of Pediatrics, Joint Committee on Infant Hearing (2007) Year 2007 position statement: principles and guidelines for early hearing detection and intervention programs. Pediatrics 120(4):898–921. https://doi.org/10.1542/peds.2007-2333
Vander Werff KR, Brown CJ, Gienapp BA, Schmidt Clay LM (2002) Comparison of auditory steady-state response and auditory brainstem response thresholds in children. J Am Acad Audiol 13(5):227–35; quiz 283–4
Polonenko MJ, Maddox RK (2019) The parallel auditory brainstem response. Trends Hear 23:2331216519871395. https://doi.org/10.1177/2331216519871395
Article PubMed PubMed Central Google Scholar
Choi JM, Purcell DW, Coyne JA, Aiken SJ (2013) Envelope following responses elicited by English sentences. Ear Hear 34(5):637–650. https://doi.org/10.1097/AUD.0b013e31828e4dad
Clinard CG, Tremblay KL (2013) Aging degrades the neural encoding of simple and complex sounds in the human brainstem. J Am Acad Audiol 24(7):590–9; quiz 643–4. https://doi.org/10.3766/jaaa.24.7.7
Kale S, Heinz MG (2010) Envelope coding in auditory nerve fibers following noise-induced hearing loss. J Assoc Res Otolaryngol 11(4):657–673. https://doi.org/10.1007/s10162-010-0223-6
Article PubMed PubMed Central Google Scholar
Mepani AM, Verhulst S, Hancock KE, Garrett M, Vasilkov V, Bennett K, de Gruttola V, Liberman MC, Maison SF (2021) Envelope following responses predict speech-in-noise performance in normal-hearing listeners. J Neurophysiol 125(4):1213–1222. https://doi.org/10.1152/jn.00620.2020
Article PubMed PubMed Central Google Scholar
Bohorquez J, Ozdamar O (2008) Generation of the 40-Hz auditory steady-state response (ASSR) explained using convolution. Clin Neurophysiol 119(11):2598–2607. https://doi.org/10.1016/j.clinph.2008.08.002
John MS, Picton TW (2000) Human auditory steady-state responses to amplitude-modulated tones: phase and latency measurements. Hear Res 141(1–2):57–79. https://doi.org/10.1016/s0378-5955(99)00209-9
Article CAS PubMed Google Scholar
Purcell DW, John SM, Schneider BA, Picton TW (2004) Human temporal auditory acuity as assessed by envelope following responses. J Acoust Soc Am 116(6):3581–3593. https://doi.org/10.1121/1.1798354
Kuwada S, Anderson JS, Batra R, Fitzpatrick DC, Teissier N, D’Angelo WR (2002) Sources of the scalp-recorded amplitude-modulation following response. J Am Acad Audiol 13(4):188–204
Chen J, Jennings SG (2022) Temporal envelope coding of the human auditory nerve inferred from electrocochleography: comparison with envelope following responses. J Assoc Res Otolaryngol. https://doi.org/10.1007/s10162-022-00865-z
Article PubMed PubMed Central Google Scholar
Simpson MJ, Jennings SG, Margolis RH (2020) Techniques for obtaining high-quality recordings in electrocochleography. Front Sys Neurosci 14:18
Brimijoin WO (2013) Oscillator and signal generator. Matlab File Exchange. https://www.mathworks.com/matlabcentral/fileexchange/37376-oscillator-and-signal-generator?tab=reviews. Accessed 14 Jan 2014
Goodman SS, Lichtenhan JT, Jennings SG (2023) Minimum detectable differences in electrocochleography measurements: bayesian-based predictions. J Assoc Res Otolaryngol 24(2):217–237. https://doi.org/10.1007/s10162-023-00888-0
Article PubMed PubMed Central Google Scholar
Hoaglin DC, Hoaglin DC, Mosteller F, Tukey JW, Hoaglin DC, Mosteller F, Tukey JW (1983) Understanding robust and exploratory data analysis. Wiley series in probability and mathematical statistics. Applied probability and statistics. Wiley, New York, xvi, 447 pages: illustrations
Keefe DH, Feeney MP, Hunter LL, Fitzpatrick DF (2016) Comparisons of transient evoked otoacoustic emissions using chirp and click stimuli. J Acoust Soc Am 140(3):1949. https://doi.org/10.1121/1.4962532
Article PubMed PubMed Central Google Scholar
Keefe DH, Feeney MP, Hunter LL, Fitzpatrick DF, Blankenship CM, Garinis AC, Putterman DB, Wroblewski M (2019) High frequency transient-evoked otoacoustic emission measurements using chirp and click stimuli. Hear Res 371:117–139. https://doi.org/10.1016/j.heares.2018.09.010
Alamri Y, Jennings SG (2023) Computational modeling of the human compound action potential. J Acoust Soc Am 153(4):2376. https://doi.org/10.1121/10.0017863
Zilany MS, Bruce IC, Carney LH (2014) Updated parameters and expanded simulation options for a model of the auditory periphery. J Acoust Soc Am 135(1):283–286. https://doi.org/10.1121/1.4837815
Article PubMed PubMed Central Google Scholar
Elberling C (1976) Simulation of cochlear action potentials recorded from the ear canal in man. In: Electrocochleography. University Park Press, Baltimore, p 151–168
Goldstein MH, Kiang NYS (1958) Synchrony of neural activity in electric responses evoked by transient acoustic stimuli. J Acoust Soc Am 30(2):107–114
Chertoff ME (2004) Analytic treatment of the compound action potential: estimating the summed post-stimulus time histogram and unit response. J Acoust Soc Am 116(5):3022–3030
Dau T (2003) The importance of cochlear processing for the formation of auditory brainstem and frequency following responses. J Acoust Soc Am 113(2):936–950. https://doi.org/10.1121/1.1534833
Lichtenhan JT, Chertoff ME (2008) Temporary hearing loss influences post-stimulus time histogram and single neuron action potential estimates from human compound action potentials. J Acoust Soc Am 123(4):2200–2212. https://doi.org/10.1121/1.2885748
Article PubMed PubMed Central Google Scholar
Temboury-Gutierrez M, Encina-Llamas G, Dau T (2024) Predicting early auditory evoked potentials using a computational model of auditory-nerve processing. J Acoust Soc Am 155(3):1799–1812. https://doi.org/10.1121/10.0025136
Liberman MC (1978) Auditory-nerve response from cats raised in a low-noise chamber. J Acoust Soc Am 63(2):442–455. https://doi.org/10.1121/1.381736
Comments (0)