Acoustical Effects of Tympanostomy Tube Attachment to Human Tympanic Membrane

Puria S (2013) Middle ear hearing devices. In: Puria S, Fay R, Popper A (eds) The middle ear. Springer, New York, NY. pp 273–308. https://doi.org/10.1007/978-1-4614-6591-1_10

Mohammadi H, Ebrahimian A, Maftoon N (2024) Experimental study of needle insertion into gerbil tympanic membrane. J Assoc Res Otolaryngol. 1–24. https://doi.org/10.1007/s10162-024-00953-2

Rosenfeld RM, Tunkel DE, Schwartz SR, Anne S, Bishop CE, Chelius DC, Hackell J, Hunter LL, Keppel KL, Kim AH et al (2022) Clinical practice guideline: tympanostomy tubes in children (update). Otolaryngol Neck Surg 166:S1–S55. https://doi.org/10.1177/01945998211065662

Article  Google Scholar 

Magdy M, Elmowafy E, Elassal M, Ishak RA (2022) Localized drug delivery to the middle ear: recent advances and perspectives for the treatment of middle and inner ear diseases. J Drug Deliv Sci Technol 69:103149. https://doi.org/10.1016/j.jddst.2022.103149

Article  CAS  Google Scholar 

Morris MS (1999) Tympanostomy tubes: types, indications, techniques, and complications. Otolaryngol Clin North Am 32:385–390

Article  CAS  PubMed  Google Scholar 

Mohammadi H, Ebrahimian A, Maftoon N (2024) Finite-element modelling of interactions of needle with tympanic membrane and middle ear. Hear Res 452:109092. https://doi.org/10.1016/j.heares.2024.109092

Article  PubMed  Google Scholar 

Mohammadi H, Ebrahimian A, Maftoon N (2023) Cutting characteristics of viscoelastic membranes under hypodermic needle insertion. Int J Mech Sci 108717. https://doi.org/10.1016/j.ijmecsci.2023.108717

Ebrahimian A, Mohammadi H, Maftoon N (2024) Mechanical effects of medical device attachment to human tympanic membrane. J Assoc Res Otolaryngol 25:285–302. https://doi.org/10.1007/s10162-024-00942-5

Article  PubMed  PubMed Central  Google Scholar 

Voss SE, Rosowski JJ, Merchant SN, Peake WT (2001) Middle-ear function with tympanic-membrane perforations. I. Measurements and mechanisms. J Acoust Soc Am 110:1432–1444. https://doi.org/10.1121/1.1394195

Article  CAS  PubMed  Google Scholar 

Voss SE, Rosowski JJ, Merchant SN, Peake WT (2001) Middle-ear function with tympanic-membrane perforations. II. A simple model. J Acoust Soc Am 110:1445–1452. https://doi.org/10.1121/1.1394196

Article  CAS  PubMed  Google Scholar 

Voss SE, Rosowski JJ, Merchant SN, Peake WT (2001) How do tympanic-membrane perforations affect human middle-ear sound transmission? Acta Oto-Laryngologica 121(2):169–173. https://doi.org/10.1080/000164801300043343

Article  CAS  PubMed  Google Scholar 

Voss SE, Rosowski JJ, Merchant SN, Peake WT (2007) Non-ossicular signal transmission in human middle ears: experimental assessment of the “acoustic route” with perforated tympanic membranes. J Acoust Soc Am 122:2135–2153. https://doi.org/10.1121/1.2769617

Article  PubMed  Google Scholar 

O’Connor KN, Tam M, Blevins NH, Puria S (2008) Tympanic membrane collagen fibers: a key to high-frequency sound conduction. Laryngoscope 118:483–490. https://doi.org/10.1097/mlg.0b013e31815b0d9f

Article  PubMed  Google Scholar 

Gan RZ, Cheng T, Dai C, Yang F, Wood MW (2009) Finite element modeling of sound transmission with perforations of tympanic membrane. J Acoust Soc Am 126:243–253. https://doi.org/10.1121/1.3129129

Article  PubMed  PubMed Central  Google Scholar 

Bevis N, Sackmann B, Effertz T, Lauxmann M, Beutner D (2022) The impact of tympanic membrane perforations on middle ear transfer function. Eur Arch Otorhinolaryngol 279:3399–3406. https://doi.org/10.1007/s00405-021-07078-9

Article  PubMed  Google Scholar 

Prendergast P, Kelly D, Rafferty M, Blayney A (1999) The effect of ventilation tubes on stresses and vibration motion in the tympanic membrane: a finite element analysis. Clin Otolaryngol Allied Sci 24:542–548. https://doi.org/10.1046/j.1365-2273.1999.00315.x

Article  CAS  PubMed  Google Scholar 

Vard JP, Kelly DJ, Blayney AW, Prendergast PJ (2008) The influence of ventilation tube design on the magnitude of stress imposed at the implant/tympanic membrane interface. Med Eng Phys 30:154–163. https://doi.org/10.1016/j.medengphy.2007.03.005

Article  PubMed  Google Scholar 

Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin J-C, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M et al (2012) 3D Slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging 30:1323–1341. https://doi.org/10.1016/j.mri.2012.05.001

Article  PubMed  PubMed Central  Google Scholar 

Ebrahimian A, Mohammadi H, Rosowski JJ, Cheng JT, Maftoon N (2023) Inaccuracies of deterministic finite-element models of human middle ear revealed by stochastic modelling. Sci Rep 13. https://doi.org/10.1038/s41598-023-34018-w

Ebrahimian A, Mohammadi H, Maftoon N (2023) Relative importance and interactions of parameters of finite-element models of human middle ear. J Acoust Soc Am 154:619–634. https://doi.org/10.1121/10.0020273

Article  PubMed  Google Scholar 

Sieber D, Erfurt P, John S, Santos GRD, Schurzig D, Sørensen MS, Lenarz T (2019) The OpenEar library of 3D models of the human temporal bone based on computed tomography and micro-slicing. Sci Data 6:1–9. https://doi.org/10.1038/sdata.2018.297

Article  Google Scholar 

Sieber DM, Erfurt P, John S, Ribeiro dos Santos G, Schurzig D, Sørensen MS, Lenarz T (2019) The OpenEar library of 3D models of the human temporal bone based on computed tomography and micro-slicing. https://doi.org/10.5281/zenodo.1473724

Gan RZ, Feng B, Sun Q (2004) Three-dimensional finite element modeling of human ear for sound transmission. Ann Biomed Eng 32:847–859. https://doi.org/10.1023/B:ABME.0000030260.22737.53

Article  PubMed  Google Scholar 

Nicolas G, Fouquet T (2013) Adaptive mesh refinement for conformal hexahedralmeshes. Finite Elem Anal Des 67:1–12. https://doi.org/10.1016/j.finel.2012.11.008

Article  Google Scholar 

Motallebzadeh H, Maftoon N, Pitaro J, Funnell WRJ, Daniel SJ (2017) Fluid-structure finite-element modelling and clinical measurement of the wideband acoustic input admittance of the newborn ear canal and middle ear. J Assoc Res Otolaryngol 18:671–686. https://doi.org/10.1007/s10162-017-0630-z

Article  PubMed  PubMed Central  Google Scholar 

Ihrle S, Lauxmann M, Eiber A, Eberhard P (2013) Nonlinear modelling of the middle ear as an elastic multibody system—applying model order reduction to acousto-structural coupled systems. J Comput Appl Math 246:18–26. https://doi.org/10.1016/j.cam.2012.07.010

Article  Google Scholar 

Kivekäs I, Poe D (2015) Is there an optimal location for tympanostomy tube placement? Laryngoscope 125:1513–1514. https://doi.org/10.1002/lary.25127

Article  PubMed  Google Scholar 

Voss SE (1998) Effects of tympanic-membrane perforations on middle-ear sound transmission: measurements, mechanisms, and models, PhD Thesis, Massachusetts Institute of Technology. https://dspace.mit.edu/handle/1721.1/9921

Filip P, Govindan A, Cosetti M (2021) In-office myringotomy and tympanostomy tube insertion. Oper Tech Otolaryngol -Head Neck Surg 32:104–110. https://doi.org/10.1016/j.otot.2021.05.007

Article  Google Scholar 

Stolz E (2006) Cerebral veins and sinuses. Handb Neurovascular Ultrasound 21:182–193

Article  Google Scholar 

Voss SE, Rosowski JJ, Merchant SN, Peake WT (2000) Acoustic responses of the human middle ear. Hear Res 150:43–69. https://doi.org/10.1016/S0378-5955(00)00177-5

Article  CAS  PubMed  Google Scholar 

Browning GG, Rovers, MM, Williamson I, Lous J, Burton M (2010) Grommets (ventilation tubes) for hearing loss associated with otitis media with effusion in children. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.cd001801.pub3

Maftoon N, Funnell WRJ, Daniel SJ, Decraemer WF (2014) Effect of opening middle-ear cavity on vibrations of gerbil tympanic membrane. J Assoc Res Otolaryngol JARO 15:319–334. https://doi.org/10.1007/s10162-014-0442-3

Article  PubMed  Google Scholar 

Motallebzadeh H, Maftoon N, Pitaro J, Funnell WRJ, Daniel SJ (2017) Finite-element modelling of the acoustic input admittance of the newborn ear canal and middle ear. J Assoc Res Otolaryngol 18:25–48. https://doi.org/10.1007/s10162-016-0587-3

Article  PubMed  Google Scholar 

Stepp CE, Voss SE (2005) Acoustics of the human middle-ear air space. J Acoust Soc Am 118:861–871. https://doi.org/10.1121/1.1974730

Article  PubMed  Google Scholar 

Rosowski J, Chien W, Ravicz M, Merchant S (2007) Testing a method for quantifying the output of implantable middle ear hearing devices. Audiol Neurotol 12:265–276. https://doi.org/10.1159/000101474

Article  CAS  Google Scholar 

Huber AM, Schwab C, Linder T, Stoeckli SJ, Ferrazzini M, Dillier N, Fisch U (2001) Evaluation of eardrum laser doppler interferometry as a diagnostic tool: evaluation of eardrum laser doppler interferometry as a diagnostic tool. Laryngoscope 111:501–507. https://doi.org/10.1097/00005537-200103000-00022

Comments (0)

No login
gif