The Transmission of Sound to the Cochlea in Normal and Pathological Human Middle Ears

Rosowski JJ (1994) Outer and inner ear. In: Popper AN, Fay RR (eds) Comparative hearing mammals. Springer Verlag, New York, pp 172–248

Chapter  Google Scholar 

Decraemer WF, Funnell WRJ (2008) Anatomical and mechanical properties of the tympanic membrane. In: Ars B (ed) Chronic otitis media. Pathogenesis-oriented therapeutic management. Kugler, The Hague, pp 51–84

Merchant SN, Nadol JB Jr (2010) Schuknecht’s pathology of the ear, 3rd ed. People’s Medical Publishing House – USA, Shelton CT.

Mason MJ (2013) Of mice, moles and guinea pigs: functional morphology of the middle ear in living mammals. Hear Res 301:4–18. https://doi.org/10.1016/j.heares.2012.10.004

Article  PubMed  Google Scholar 

Merchant SN, Ravicz ME, Voss SE, Peake WT, Rosowski JJ (1998) Middle ear mechanics in normal, diseased and reconstructed ears. J. Laryngol & Otol 112(8):715–731. https://doi.org/10.1017/s0022215100141568

Article  CAS  Google Scholar 

Rosowski JJ (1996) Models of external and middle-ear function. In: Hawkins HL, McMullen TA, Popper AN, Fay RR (eds) Auditory Computation. Springer Verlag, New York, pp 15–61

Chapter  Google Scholar 

Rosowski JJ, Graybeal A (1991) What did Morganucodon hear? Zool J Linnean Soc 101:131–168. https://doi.org/10.1111/j.1096-3642.1991.tb00890.x

Article  Google Scholar 

Hemilä S, Nummela S, Reuter T (1995) What middle ear parameters tell about impedance matching and high frequency hearing. Hear Res 85:31–44. https://doi.org/10.1016/0378-5955(95)00031-x

Article  PubMed  Google Scholar 

Rosowski JJ, Davis PJ, Merchant SN, Donahue KM, Coltrera MD (1990) Cadaver middle ears as models for living ears: comparisons of middle-ear input immittance. Ann Otol Rhinol Laryngol 99(5):403–412. https://doi.org/10.1177/000348949009900515

Article  CAS  PubMed  Google Scholar 

Goode RL, Ball G, Nishihara S, Nakamura K (1996) Laser doppler vibrometer (LDV) a new clinical tool for the otologist. Am J Otol 17(6):813–822

CAS  PubMed  Google Scholar 

Chien W, Rosowski JJ, Ravicz ME, Rauch SD, Smullen J, Merchant SN (2009) Measurements of stapes velocity in live human ears. Hear Res 249:54–61. https://doi.org/10.1016/j.heares.2008.11.011

Article  PubMed  Google Scholar 

von Békésy G (1960) Experiments in hearing. McGraw-Hill, New York

Google Scholar 

Metz O (1946) The acoustic impedance measured on normal and pathological ears. Acta Oto-laryngol Suppl 63:1–254

Google Scholar 

Lidén G, Peterson JL, Björkman G (1970) Tympanometry. Arch Otolaryngol 92(3):248–257. https://doi.org/10.1001/archotol.1970.04310030038009

Article  PubMed  Google Scholar 

Keefe DH, Ling R, Bulen JC (1992) Method to measure acoustic impedance and reflection coefficient. J Acoust Soc Am 91(1):470–485. https://doi.org/10.1121/1.402733

Article  CAS  PubMed  Google Scholar 

Keefe DH, Bulen JC, Hoberg Arehart K, Burns EM (1993) Ear-canal impedance and reflection coefficient in human infants and adults. J Acoust Soc Am 94:2617–2638. https://doi.org/10.1121/1.407347

Article  CAS  PubMed  Google Scholar 

Voss SE, Allen JB (1994) Measurement of acoustic impedance and reflectance in the human ear canal. J Acoust Soc Am 95(1):372–384. https://doi.org/10.1121/1.408329

Article  CAS  PubMed  Google Scholar 

Rosowski JJ, Nakajima HH, Hamade MA, Mafoud L, Merchant G, Halpin CF, Merchant SN (2012) Ear-canal reflectance, umbo velocity and tympanometry in normal hearing ears. Ear Hear 33:19–34. https://doi.org/10.1097/AUD.0b013e31822ccb76

Nakajima HH, Rosowski JJ, Shahnaz N, Voss SE (2013) Assessment of ear disorders using power reflectance. Ear Hear 34(S1):49S-53S. https://doi.org/10.1097/AUD.0b013e31829c964d

Article  Google Scholar 

Merchant GR, Siegel JH, Neely ST, Rosowski JJ, Nakajima HH (2019) Effect of middle-ear pathology on high-frequency ear canal reflectance measurements in the frequency and time domains. J Assoc Res Otolaryngol 20(6):529–552. https://doi.org/10.1007/s10162-019-00735-1

Article  PubMed  PubMed Central  Google Scholar 

Zwislocki J, Feldman AS (1963) Post-mortem acoustic impedance of human ears. J Acoust Soc Amer 35(1):104–107. https://doi.org/10.1121/1.1918421

Article  Google Scholar 

Huber AM, Schwab C, Linder T, Stoeckli SJ, Ferrazzinin M, Dillier N, Fisch U (2001) Evaluation of eardrum laser Doppler interferometry as a diagnostic tool. Laryngoscope 111(3):501–507. https://doi.org/10.1097/00005537-200103000-00022

Article  CAS  PubMed  Google Scholar 

Whittemore KR, Merchant SN, Poon BB, Rosowski JJ (2004) A normative study of tympanic membrane motion in humans using a laser Doppler vibrometer (LDV). Hear Res 187:85–104. https://doi.org/10.1016/s0378-5955(03)00332-0

Article  PubMed  Google Scholar 

Huber A, Linder T, Ferrazzini M, Schmid S, Dillier N, Stoeckli S, Fisch U (2001) Intraoperative assessment of stapes movement. Ann Otol Rhinol Laryngol 110(1):31–35. https://doi.org/10.1177/000348940111000106

Article  CAS  PubMed  Google Scholar 

Ruggero MA, Temchin AN (2003) Middle-ear transmission in humans: wide-band, not frequency-tuned? Acoust Res Lett Online 4(2):53–58. https://doi.org/10.1121/1.1566924

Article  PubMed  PubMed Central  Google Scholar 

Chien W, Ravicz ME, Merchant SN, Rosowski JJ (2006) The effect of methodological differences in the measurement of stapes motion in live and cadaver ears. Audiol & Neurotol 11:183–197. https://doi.org/10.1159/000091815

Article  Google Scholar 

Peake WT, Rosowski JJ, Lynch TJ III (1992) Middle-ear transmission: acoustic vs. ossicular coupling in cat and human. Hear Res 57:245–268. https://doi.org/10.1016/0378-5955(92)90155-g

Article  CAS  PubMed  Google Scholar 

Wever EG, Lawrence M (1954) Physiological acoustics. Princeton University Press, Princeton, New Jersey

Book  Google Scholar 

Stenfelt S (2011) Acoustic and physiologic aspects of bone conduction hearing. Advances in Otorhinolaryngology 71:10–21. https://doi.org/10.1159/000323574

Article  Google Scholar 

Wever EG, Lawrence M, Smith KR (1948) The middle ear in sound conduction. Arch Otolaryngol 48:19–35. https://doi.org/10.1001/archotol.1948.00690040026003

Article  Google Scholar 

Voss SE, Rosowski JJ, Peake WT (1996) Is the pressure difference between the oval and round windows the effective acoustic stimulus for the cochlea? J Acoust Soc Am 100(3):1602–1616. https://doi.org/10.1121/1.416062

Article  CAS  PubMed  Google Scholar 

Shera CA, Zweig G (1992) Middle-ear phenomenology: the view from the three windows. J Acoust Soc Am 92(3):1356–1370. https://doi.org/10.1121/1.403929

Article  CAS  PubMed  Google Scholar 

Kurokawa H, Goode RL (1995) Sound pressure gain produced by the human middle ear. Otolaryngol Head Neck Surg 113(4):349–355. https://doi.org/10.1016/S0194-59989570067-6

Article  CAS  PubMed  Google Scholar 

Voss SE, Rosowski JJ, Merchant SN, Peake WT (2007) Non-ossicular signal transmission in human middle ears: experimental assessment of the “acoustic route” with perforated tympanic membranes. J Acoust Soc Am 122:2135–2153. https://doi.org/10.1121/1.2769617

Article  PubMed  Google Scholar 

Zwislocki J (1957) In search of the bone-conduction threshold in a free sound field. J Acoust Soc Am 29(7):795–804. https://doi.org/10.1121/1.1909058

Article  Google Scholar 

Voss SE, Rosowski JJ, Merchant SN, Peake WT (2001) How do tympanic-membrane perforations affect human middle-ear sound transmission? Acta Otolaryngol 121(2):169–173. https://doi.org/10.1080/000164801300043343

Article  CAS  PubMed  Google Scholar 

Reinfeldt S, Eeg-Olofsson M, Jansson K-JF, Persson A-C, Håkansson B (2022) Long-term follow-up and review of the bone conduction implant. Hear Res 421:108503. https://doi.org/10.1016/j.heares.2022.108503

Article  PubMed 

Comments (0)

No login
gif