Mottamal M, Zheng S, Huang T, Wang G. Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules. 2015;20:3898–941. https://doi.org/10.3390/molecules20033898.
Article CAS PubMed PubMed Central Google Scholar
Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell. 2012;150:12–27.
Article CAS PubMed Google Scholar
Sepideh K. The nucleosome: from genomic organization to genomic regulation. Cell. 2004;116:259–72.
Suraweera A, O’Byrne KJ, Richard DJ. Combination therapy with histone deacetylase inhibitors (HDACi) for the treatment of Cancer: achieving the full therapeutic potential of H-DACi. Frontiers in Oncology. 2018;8:92. https://doi.org/10.3389/fonc.2018.00092.
Article PubMed PubMed Central Google Scholar
Sterner DE, Berger SL. Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev. 2000;64:435–59. https://doi.org/10.1128/mmbr.64.2.435-459.2000.
Article CAS PubMed PubMed Central Google Scholar
Kouzarides T. Acetylation: a regulatory modification to rival phosphorylation? Embo J. 2000;19:1176–9. https://doi.org/10.1093/emboj/19.6.1176.
Article CAS PubMed PubMed Central Google Scholar
Tong JJ, Liu J, Bertos NR, Yang XJ. Identification of HDAC10, a novel class II human histone deacetylase containing a leucine-rich domain. Nucleic Acids Res. 2002;30:1114–23. https://doi.org/10.1093/nar/30.5.1114.
Article CAS PubMed PubMed Central Google Scholar
Zhang Y, Huang J, Li Q, Chen K, Liang Y, Zhan Z, et al. Histone methyltransferase SETDB1 promotes cells proliferation and migration by interacting withTiam1 in hepatocellular carcinoma. BMC Cancer. 2018;18:539. https://doi.org/10.1186/s12885-018-4464-9.
Article CAS PubMed PubMed Central Google Scholar
Kee HJ, Sohn IS, Nam KI, Park JE, Qian YR, Yin Z, et al. Inhibition of histone deacetylation blocks cardiac hypertrophy induced by angiotensin II infusion and aortic banding. Circulation. 2006;113:51–9. https://doi.org/10.1161/circulationaha.105.559724.
Article CAS PubMed Google Scholar
Trivedi CM, Luo Y, Yin Z, Zhang M, Zhu W, Wang T, et al. Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3 beta activity. Nat Med. 2007;13:324–31. https://doi.org/10.1038/nm1552.
Chang S, McKinsey TA, Zhang CL, Richardson JA, Hill JA, Olson EN. Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Mol Cell Biol. 2004;24:8467–76. https://doi.org/10.1128/mcb.24.19.8467-8476.2004.
Article CAS PubMed PubMed Central Google Scholar
Zhang X, Yuan Z, Zhang Y, Yong S, Salas-Burgos A, Koomen J, et al. HDAC6 modulates cell motility by altering the acetylation level of cortactin. Mol Cell. 2007;27:197–213. https://doi.org/10.1016/j.molcel.2007.05.033.
Article CAS PubMed PubMed Central Google Scholar
Krämer OH, Mahboobi S, Sellmer A. Drugging the HDAC6-HSP90 interplay in malignant cells. Trends Pharmacol Sci. 2014;35:501–9. https://doi.org/10.1016/j.tips.2014.08.001.
Article CAS PubMed Google Scholar
Desai A, Mitchison TJ. Microtubule polymerization dynamics. Annu Rev Cell Dev Biol. 1997;13:83–117. https://doi.org/10.1146/annurev.cellbio.13.1.83.
Article CAS PubMed Google Scholar
Parker AL, Kavallaris M, McCarroll JA. Microtubules and their role in cellular stress in cancer. Front Oncol. 2014;4:153. https://doi.org/10.3389/fonc.2014.00153.
Article PubMed PubMed Central Google Scholar
Chinen T, Liu P, Shioda S, Pagel J, Cerikan B, Lin TC, et al. The γ-tubulin-specific inhibitor gatastatin reveals temporal requirements of microtubule nucleation during the cell cycle. Nat Commun. 2015;6:8722. https://doi.org/10.1038/ncomms9722.
Article CAS PubMed Google Scholar
Li G, Wang Y, Li L, Ren Y, Deng X, Liu J, et al. Design, synthesis, and bioevaluation of pyrazolo[1,5-a]pyrimidine derivatives as tubulin polymerization inhibitors targeting the colchicine binding site with potent anticancer activities. Eur J Med Chem. 2020;202:112519. https://doi.org/10.1016/j.ejmech.2020.112519.
Article CAS PubMed Google Scholar
Fojo T, Menefee M. Mechanisms of multidrug resistance: the potential role of microtubule-stabilizing agents. Ann Oncol. 2007;18:v3–8. https://doi.org/10.1093/annonc/mdm172. Suppl 5
Cao D, Liu Y, Yan W, Wang C, Bai P, Wang T, et al. Design, synthesis, and evaluation of in vitro and in vivo anticancer activity of 4-substituted coumarins: a novel class of potent tubulin polymerization inhibitors. J Med Chem. 2016;59:5721–39. https://doi.org/10.1021/acs.jmedchem.6b00158.
Article CAS PubMed Google Scholar
Podolski-Renić A, Banković J, Dinić J, Ríos-Luci C, Fernandes MX, Ortega N, et al. DTA0100, dual topoisomerase II and microtubule inhibitor, evades paclitaxel resistance in P-glycoprotein overexpressing cancer cells. Eur J Pharm Sci. 2017;105:159–68. https://doi.org/10.1016/j.ejps.2017.05.011.
Article CAS PubMed Google Scholar
Rustin GJ, Shreeves G, Nathan PD, Gaya A, Ganesan TS, Wang D, et al. A Phase Ib trial of CA4P (combretastatin A-4 phosphate), carboplatin, and paclitaxel in patients with advanced cancer. Br J Cancer. 2010;102:1355–60. https://doi.org/10.1038/sj.bjc.6605650.
Article CAS PubMed PubMed Central Google Scholar
Xia LY, Zhang YL, Yang R, Wang ZC, Lu YD, Wang BZ, et al. Tubulin Inhibitors Binding to Colchicine-Site: A Review from 2015 to 2019. Curr Med Chem. 2020;27:6787–814. https://doi.org/10.2174/0929867326666191003154051.
Article CAS PubMed Google Scholar
Shobeiri N, Rashedi M, Mosaffa F, Zarghi A, Ghandadi M, Ghasemi A, et al. Synthesis and biological evaluation of quinoline analogues of flavones as potential anticancer agents and tubulin polymerization inhibitors. Eur J Med Chem. 2016;114:14–23. https://doi.org/10.1016/j.ejmech.2016.02.069.
Article CAS PubMed Google Scholar
Zhou Y, Yan W, Cao D, Shao M, Li D, Wang F, et al. Design, synthesis and biological evaluation of 4-anilinoquinoline derivatives as novel potent tubulin depolymerization agents. Eur J Med Chem. 2017;138:1114–25. https://doi.org/10.1016/j.ejmech.2017.07.040.
Article CAS PubMed Google Scholar
Thakur A, Tawa GJ, Henderson MJ, Danchik C, Liu S, Shah P, et al. Design, synthesis, and biological evaluation of Quinazolin-4-one-Based hydroxamic acids as dual PI3K/HDAC inhibitors. J Med Chem. 2020;63:4256–92. https://doi.org/10.1021/acs.jmedchem.0c00193.
Article CAS PubMed PubMed Central Google Scholar
Shang E, Yuan Y, Chen X, Liu Y, Pei J, Lai L. De novo design of multitarget ligands with an iterative fragment-growing strategy. J Chem Inf Model. 2014;54:1235–41. https://doi.org/10.1021/ci500021v.
Article CAS PubMed Google Scholar
Anighoro A, Bajorath J, Rastelli G. Polypharmacology: challenges and opportunities in drug discovery. Journal of Medicinal Chemistry. 2014;57:7874–87. https://doi.org/10.1021/jm5006463.
Comments (0)