Design, synthesis and antitumor activity study of tubulin/HDAC6 dual targeting inhibitor

Mottamal M, Zheng S, Huang T, Wang G. Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules. 2015;20:3898–941. https://doi.org/10.3390/molecules20033898.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell. 2012;150:12–27.

Article  CAS  PubMed  Google Scholar 

Sepideh K. The nucleosome: from genomic organization to genomic regulation. Cell. 2004;116:259–72.

Article  Google Scholar 

Suraweera A, O’Byrne KJ, Richard DJ. Combination therapy with histone deacetylase inhibitors (HDACi) for the treatment of Cancer: achieving the full therapeutic potential of H-DACi. Frontiers in Oncology. 2018;8:92. https://doi.org/10.3389/fonc.2018.00092.

Article  PubMed  PubMed Central  Google Scholar 

Sterner DE, Berger SL. Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev. 2000;64:435–59. https://doi.org/10.1128/mmbr.64.2.435-459.2000.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kouzarides T. Acetylation: a regulatory modification to rival phosphorylation? Embo J. 2000;19:1176–9. https://doi.org/10.1093/emboj/19.6.1176.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tong JJ, Liu J, Bertos NR, Yang XJ. Identification of HDAC10, a novel class II human histone deacetylase containing a leucine-rich domain. Nucleic Acids Res. 2002;30:1114–23. https://doi.org/10.1093/nar/30.5.1114.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Y, Huang J, Li Q, Chen K, Liang Y, Zhan Z, et al. Histone methyltransferase SETDB1 promotes cells proliferation and migration by interacting withTiam1 in hepatocellular carcinoma. BMC Cancer. 2018;18:539. https://doi.org/10.1186/s12885-018-4464-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kee HJ, Sohn IS, Nam KI, Park JE, Qian YR, Yin Z, et al. Inhibition of histone deacetylation blocks cardiac hypertrophy induced by angiotensin II infusion and aortic banding. Circulation. 2006;113:51–9. https://doi.org/10.1161/circulationaha.105.559724.

Article  CAS  PubMed  Google Scholar 

Trivedi CM, Luo Y, Yin Z, Zhang M, Zhu W, Wang T, et al. Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3 beta activity. Nat Med. 2007;13:324–31. https://doi.org/10.1038/nm1552.

Article  PubMed  Google Scholar 

Chang S, McKinsey TA, Zhang CL, Richardson JA, Hill JA, Olson EN. Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Mol Cell Biol. 2004;24:8467–76. https://doi.org/10.1128/mcb.24.19.8467-8476.2004.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang X, Yuan Z, Zhang Y, Yong S, Salas-Burgos A, Koomen J, et al. HDAC6 modulates cell motility by altering the acetylation level of cortactin. Mol Cell. 2007;27:197–213. https://doi.org/10.1016/j.molcel.2007.05.033.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Krämer OH, Mahboobi S, Sellmer A. Drugging the HDAC6-HSP90 interplay in malignant cells. Trends Pharmacol Sci. 2014;35:501–9. https://doi.org/10.1016/j.tips.2014.08.001.

Article  CAS  PubMed  Google Scholar 

Desai A, Mitchison TJ. Microtubule polymerization dynamics. Annu Rev Cell Dev Biol. 1997;13:83–117. https://doi.org/10.1146/annurev.cellbio.13.1.83.

Article  CAS  PubMed  Google Scholar 

Parker AL, Kavallaris M, McCarroll JA. Microtubules and their role in cellular stress in cancer. Front Oncol. 2014;4:153. https://doi.org/10.3389/fonc.2014.00153.

Article  PubMed  PubMed Central  Google Scholar 

Chinen T, Liu P, Shioda S, Pagel J, Cerikan B, Lin TC, et al. The γ-tubulin-specific inhibitor gatastatin reveals temporal requirements of microtubule nucleation during the cell cycle. Nat Commun. 2015;6:8722. https://doi.org/10.1038/ncomms9722.

Article  CAS  PubMed  Google Scholar 

Li G, Wang Y, Li L, Ren Y, Deng X, Liu J, et al. Design, synthesis, and bioevaluation of pyrazolo[1,5-a]pyrimidine derivatives as tubulin polymerization inhibitors targeting the colchicine binding site with potent anticancer activities. Eur J Med Chem. 2020;202:112519. https://doi.org/10.1016/j.ejmech.2020.112519.

Article  CAS  PubMed  Google Scholar 

Fojo T, Menefee M. Mechanisms of multidrug resistance: the potential role of microtubule-stabilizing agents. Ann Oncol. 2007;18:v3–8. https://doi.org/10.1093/annonc/mdm172. Suppl 5

Article  PubMed  Google Scholar 

Cao D, Liu Y, Yan W, Wang C, Bai P, Wang T, et al. Design, synthesis, and evaluation of in vitro and in vivo anticancer activity of 4-substituted coumarins: a novel class of potent tubulin polymerization inhibitors. J Med Chem. 2016;59:5721–39. https://doi.org/10.1021/acs.jmedchem.6b00158.

Article  CAS  PubMed  Google Scholar 

Podolski-Renić A, Banković J, Dinić J, Ríos-Luci C, Fernandes MX, Ortega N, et al. DTA0100, dual topoisomerase II and microtubule inhibitor, evades paclitaxel resistance in P-glycoprotein overexpressing cancer cells. Eur J Pharm Sci. 2017;105:159–68. https://doi.org/10.1016/j.ejps.2017.05.011.

Article  CAS  PubMed  Google Scholar 

Rustin GJ, Shreeves G, Nathan PD, Gaya A, Ganesan TS, Wang D, et al. A Phase Ib trial of CA4P (combretastatin A-4 phosphate), carboplatin, and paclitaxel in patients with advanced cancer. Br J Cancer. 2010;102:1355–60. https://doi.org/10.1038/sj.bjc.6605650.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xia LY, Zhang YL, Yang R, Wang ZC, Lu YD, Wang BZ, et al. Tubulin Inhibitors Binding to Colchicine-Site: A Review from 2015 to 2019. Curr Med Chem. 2020;27:6787–814. https://doi.org/10.2174/0929867326666191003154051.

Article  CAS  PubMed  Google Scholar 

Shobeiri N, Rashedi M, Mosaffa F, Zarghi A, Ghandadi M, Ghasemi A, et al. Synthesis and biological evaluation of quinoline analogues of flavones as potential anticancer agents and tubulin polymerization inhibitors. Eur J Med Chem. 2016;114:14–23. https://doi.org/10.1016/j.ejmech.2016.02.069.

Article  CAS  PubMed  Google Scholar 

Zhou Y, Yan W, Cao D, Shao M, Li D, Wang F, et al. Design, synthesis and biological evaluation of 4-anilinoquinoline derivatives as novel potent tubulin depolymerization agents. Eur J Med Chem. 2017;138:1114–25. https://doi.org/10.1016/j.ejmech.2017.07.040.

Article  CAS  PubMed  Google Scholar 

Thakur A, Tawa GJ, Henderson MJ, Danchik C, Liu S, Shah P, et al. Design, synthesis, and biological evaluation of Quinazolin-4-one-Based hydroxamic acids as dual PI3K/HDAC inhibitors. J Med Chem. 2020;63:4256–92. https://doi.org/10.1021/acs.jmedchem.0c00193.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shang E, Yuan Y, Chen X, Liu Y, Pei J, Lai L. De novo design of multitarget ligands with an iterative fragment-growing strategy. J Chem Inf Model. 2014;54:1235–41. https://doi.org/10.1021/ci500021v.

Article  CAS  PubMed  Google Scholar 

Anighoro A, Bajorath J, Rastelli G. Polypharmacology: challenges and opportunities in drug discovery. Journal of Medicinal Chemistry. 2014;57:7874–87. https://doi.org/10.1021/jm5006463.

Article  CAS  PubMed 

Comments (0)

No login
gif