Exploring putative histone deacetylase inhibitors with antiproliferative activity of chrysin derivatives

Somsakeesit L, Senawong T, Senawong G, Kumboonma P, Samankul A, Namwan N, et al. Evaluation and molecular docking study of two flavonoids from Oroxylum indicum (L.) Kurz and their semi-synthetic derivatives as histone deacetylase inhibitors. J Nat Med. 2024;78:236–45. https://doi.org/10.1007/s11418-023-01758-y

Article  CAS  PubMed  Google Scholar 

Jang JU, Abdillah AM, Bu SY, Yun JW. Chrysin stimulates UCP1-independent thermogenesis in 3T3-L1 adipocytes and mouse model. Biotechnol Bioprocess Eng. 2024. https://doi.org/10.1007/s12257-024-00126-1

Article  Google Scholar 

Boothapandi M, Pandi A, Radha B, Cruz AA, Sukumaran S. Cytoprotective Impact of Chrysin (5,7-dihydroxyflavone) upon cyclophosphamide-administered experimental animals. Cytology and Genetics. 2024;58:440–55. https://doi.org/10.3103/s0095452724050086

Article  Google Scholar 

Ganai SA, Sheikh FA, Baba ZA. Plant flavone Chrysin as an emerging histone deacetylase inhibitor for prosperous epigenetic-based anticancer therapy. Phytother Res. 2021;35:823–34. https://doi.org/10.1002/ptr.6869

Article  CAS  PubMed  Google Scholar 

Zhu ZY, Wang WX, Wang Z, Chen L, Zhang JY, Liu X, et al. Synthesis and anti-tumoractivity evaluation of chrysin derovatives. Eur J Med Chem. 2014;75:297–300. https://doi.org/10.1016/j.ejmech.2013.12.044

Article  CAS  PubMed  Google Scholar 

Lv PC, Wang KR, Li QS, Chen J, Sun J, Zhu HL. Design, synthesis and biological evaluation of chrysin long-chain derivatives as potential anticancer agents. Bioorg Med Chem. 2010;18:1117–23. https://doi.org/10.1016/j.bmc.2009.12.048

Article  CAS  PubMed  Google Scholar 

Al-Oudat BA, Alqudah MA, Audat SA, Al-Balas QA, El-Elimat T, Hassan MA, et al. Design, synthesis, and biologic evaluation of novel chrysin derivatives as cytotoxic agents and caspase-3/7 activators. Drug Des Devel Ther. 2019;13:423–33. https://doi.org/10.2147/DDDT.S189476

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wei M, Xie M, Zhang Z, Wei Y, Zhang J, Pan H, et al. Design and synthesis of novel Flavone-based histone deacetylase inhibitors antagonizing activation of STAT3 in breast cancer. Eur J Med Chem. 2020;206:112677. https://doi.org/10.1016/j.ejmech.2020.112677

Article  CAS  PubMed  Google Scholar 

Shen P, Wang Y, Yu S, Du Y, Li Z, Wang J. Practical, facile, and efficient approach to scalable synthesis of the flavonoid derivative GL-V9. Organic Process Research & Development. 2024;28:3161–70. https://doi.org/10.1021/acs.oprd.4c00082

Article  CAS  Google Scholar 

Yang D, Tian X, Ye Y, Liang Y, Zhao J, Wu T, et al. Identification of GL-V9 as a novel senolytic agent against senescent breast cancer cells. Life Sci. 2021;272:119196 .https://doi.org/10.1016/j.lfs.2021.119196

Article  CAS  PubMed  Google Scholar 

Li L, Lu N, Dai Q, Wei L, Zhao Q, Li Z, et al. GL-V9, a newly synthetic flavonoid derivative, induces mitochondrial-mediated apoptosis and G2/M cell cycle arrest in human hepatocellular carcinoma HepG2 cells. Eur J Pharmacol. 2011;670:13–21. https://doi.org/10.1016/j.ejphar.2011.08.054

Article  CAS  PubMed  Google Scholar 

Guo Y, Wei L, Zhou Y, Lu N, Tang X, Li Z, et al. Flavonoid GL-V9 induces apoptosis and inhibits glycolysis of breast cancer via disrupting GSK-3β-modulated mitochondrial binding of HKII. Free Radic Biol Med. 2020;146:119–29. https://doi.org/10.1016/j.freeradbiomed.2019.10.413

Article  CAS  PubMed  Google Scholar 

Tavan M, Hanachi P, de la Luz Cadiz-Gurrea M, Segura Carretero A, Mirjalili MH. Natural phenolic compounds with neuroprotective effects. Neurochem Res. 2024;49:306–26. https://doi.org/10.1007/s11064-023-04046-z

Article  CAS  PubMed  Google Scholar 

Hangsamai N, Photai K, Mahaamnart T, Kanokmedhakul S, Kanokmedhakul K, Senawong T, et al. Four new anthraquinones with histone deacetylase inhibitory activity from Ventilago denticulata roots. Molecules. 2022;27:1088. https://doi.org/10.3390/molecules27031088

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao N, Yang F, Han L, Qu Y, Ge D, Zhang H. Development of coumarin-based hydroxamates as histone deacetylase inhibitors with antitumor activities. Molecules. 2020;25:717. https://doi.org/10.3390/molecules25030717

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qiu X, Xiao X, Li N, Li Y. Histone deacetylases inhibitors (HDACis) as novel therapeutic application in various clinical diseases. Prog Neuro-Psychopharmacol Biol Psychiatry. 2017;72:60–72. https://doi.org/10.1016/j.pnpbp.2016.09.002

Article  CAS  Google Scholar 

Abdizadeh T, Kalani MR, Abnous K, Tayarani-Najaran Z, Khashyarmanesh BZ, Abdizadeh R, et al. Design, synthesis and biological evaluation of novel coumarin-based benzamides as potent histone deacetylase inhibitors and anticancer agents. Eur J Med Chem. 2017;132:42–62. https://doi.org/10.1016/j.ejmech.2017.03.024

Article  CAS  PubMed  Google Scholar 

Garrido González FP, Mancilla Percino T, Synthesis, docking study and inhibitory activity of 2,6-diketopiperazines derived from α-amino acids on HDAC8. Bioorganic Chemistry 2020;214-40. https://doi.org/10.1016/j.bioorg.2020.104080

Fruhauf A, Meyer-Almes FJ. Non-hydroxamate zinc-binding groups as warheads for histone deacetylases. Molecules. 2021;26:5151. https://doi.org/10.3390/molecules26175151

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hu K, Wang W, Cheng H, Pan S, Ren J. Synthesis and cytotoxicity of novel chrysin derivatives. Med Chem Res. 2010;20:838–46. https://doi.org/10.1007/s00044-010-9395-1

Article  CAS  Google Scholar 

Chakrabarti A, Oehme I, Witt O, Oliveira G, Sippl W, Romier C, et al. HDAC8: a multifaceted target for therapeutic interventions. Trends Pharmacol Sci. 2015;36:481–92. https://doi.org/10.1016/j.tips.2015.04.013

Article  CAS  PubMed  Google Scholar 

Liu C, Kou X, Wang X, Wu J, Yang A, Shen R. Novel chrysin derivatives as hidden multifunctional agents for anti-Alzheimer’s disease: design, synthesis and in vitro evaluation. Eur J Pharm Sci. 2021;166:105976. https://doi.org/10.1016/j.ejps.2021.105976

Article  CAS  PubMed  Google Scholar 

Geurs S, Clarisse D, De Bosscher K, D’Hooghe M. The zinc-binding group effect: lessons from non-hydroxamic acid vorinostat analogs. J Med Chem. 2023;66:7698–729. https://doi.org/10.1021/acs.jmedchem.3c00226

Article  CAS  PubMed  Google Scholar 

Abdel-Hamid NM, Fathy M, Koike C, Yoshida T, Okabe M, Zho K, et al. Identification of chemo and radio-resistant sub-population of stem cells in human cervical cancer HeLa cells. Cancer Invest. 2021;39:661–74. https://doi.org/10.1080/07357907.2021.1931875

Article  CAS  PubMed  Google Scholar 

Yaacoub C, Rifi M, El-Obeid D, Mawlawi H, Sabatier JM, Coutard B, et al. The cytotoxic effect of Apis mellifera venom with a synergistic potential of its two main components-melittin and PLA2-On colon cancer HCT116 cell lines. Molecules. 2021;26:2264. https://doi.org/10.3390/molecules26082264

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo H, Ding H, Tang X, Liang M, Li S, Zhang J, et al. Quercetin induces pro-apoptotic autophagy via SIRT1/AMPK signaling pathway in human lung cancer cell lines A549 and H1299 in vitro. Thorac Cancer. 2021;12:1415–22. https://doi.org/10.1111/1759-7714.13925

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kattar SD, Surdi LM, Zabierek A, Methot JL, Middleton RE, Hughes B, et al. Parallel medicinal chemistry approaches to selective HDAC1/HDAC2 inhibitor (SHI- 1:2) optimization. Bioorg Med Chem Lett. 2009;19:1168–72. https://doi.org/10.1016/j.bmcl.2008.12.083

Article  CAS  PubMed  Google Scholar 

Daina A, Michielin O, Zoete V SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017;7:42717. Available online: http://www.swissadme.ch/index.php. Accessed September 10, 2024.

Tsantili-Kakoulidou A, Demopoulos VJ. Drug-like properties and fraction lipophilicity index as a combined metric. ADMET DMPK. 2021;9:177–90. https://doi.org/10.5599/admet.1022

Article 

Comments (0)

No login
gif