Somsakeesit L, Senawong T, Senawong G, Kumboonma P, Samankul A, Namwan N, et al. Evaluation and molecular docking study of two flavonoids from Oroxylum indicum (L.) Kurz and their semi-synthetic derivatives as histone deacetylase inhibitors. J Nat Med. 2024;78:236–45. https://doi.org/10.1007/s11418-023-01758-y
Article CAS PubMed Google Scholar
Jang JU, Abdillah AM, Bu SY, Yun JW. Chrysin stimulates UCP1-independent thermogenesis in 3T3-L1 adipocytes and mouse model. Biotechnol Bioprocess Eng. 2024. https://doi.org/10.1007/s12257-024-00126-1
Boothapandi M, Pandi A, Radha B, Cruz AA, Sukumaran S. Cytoprotective Impact of Chrysin (5,7-dihydroxyflavone) upon cyclophosphamide-administered experimental animals. Cytology and Genetics. 2024;58:440–55. https://doi.org/10.3103/s0095452724050086
Ganai SA, Sheikh FA, Baba ZA. Plant flavone Chrysin as an emerging histone deacetylase inhibitor for prosperous epigenetic-based anticancer therapy. Phytother Res. 2021;35:823–34. https://doi.org/10.1002/ptr.6869
Article CAS PubMed Google Scholar
Zhu ZY, Wang WX, Wang Z, Chen L, Zhang JY, Liu X, et al. Synthesis and anti-tumoractivity evaluation of chrysin derovatives. Eur J Med Chem. 2014;75:297–300. https://doi.org/10.1016/j.ejmech.2013.12.044
Article CAS PubMed Google Scholar
Lv PC, Wang KR, Li QS, Chen J, Sun J, Zhu HL. Design, synthesis and biological evaluation of chrysin long-chain derivatives as potential anticancer agents. Bioorg Med Chem. 2010;18:1117–23. https://doi.org/10.1016/j.bmc.2009.12.048
Article CAS PubMed Google Scholar
Al-Oudat BA, Alqudah MA, Audat SA, Al-Balas QA, El-Elimat T, Hassan MA, et al. Design, synthesis, and biologic evaluation of novel chrysin derivatives as cytotoxic agents and caspase-3/7 activators. Drug Des Devel Ther. 2019;13:423–33. https://doi.org/10.2147/DDDT.S189476
Article CAS PubMed PubMed Central Google Scholar
Wei M, Xie M, Zhang Z, Wei Y, Zhang J, Pan H, et al. Design and synthesis of novel Flavone-based histone deacetylase inhibitors antagonizing activation of STAT3 in breast cancer. Eur J Med Chem. 2020;206:112677. https://doi.org/10.1016/j.ejmech.2020.112677
Article CAS PubMed Google Scholar
Shen P, Wang Y, Yu S, Du Y, Li Z, Wang J. Practical, facile, and efficient approach to scalable synthesis of the flavonoid derivative GL-V9. Organic Process Research & Development. 2024;28:3161–70. https://doi.org/10.1021/acs.oprd.4c00082
Yang D, Tian X, Ye Y, Liang Y, Zhao J, Wu T, et al. Identification of GL-V9 as a novel senolytic agent against senescent breast cancer cells. Life Sci. 2021;272:119196 .https://doi.org/10.1016/j.lfs.2021.119196
Article CAS PubMed Google Scholar
Li L, Lu N, Dai Q, Wei L, Zhao Q, Li Z, et al. GL-V9, a newly synthetic flavonoid derivative, induces mitochondrial-mediated apoptosis and G2/M cell cycle arrest in human hepatocellular carcinoma HepG2 cells. Eur J Pharmacol. 2011;670:13–21. https://doi.org/10.1016/j.ejphar.2011.08.054
Article CAS PubMed Google Scholar
Guo Y, Wei L, Zhou Y, Lu N, Tang X, Li Z, et al. Flavonoid GL-V9 induces apoptosis and inhibits glycolysis of breast cancer via disrupting GSK-3β-modulated mitochondrial binding of HKII. Free Radic Biol Med. 2020;146:119–29. https://doi.org/10.1016/j.freeradbiomed.2019.10.413
Article CAS PubMed Google Scholar
Tavan M, Hanachi P, de la Luz Cadiz-Gurrea M, Segura Carretero A, Mirjalili MH. Natural phenolic compounds with neuroprotective effects. Neurochem Res. 2024;49:306–26. https://doi.org/10.1007/s11064-023-04046-z
Article CAS PubMed Google Scholar
Hangsamai N, Photai K, Mahaamnart T, Kanokmedhakul S, Kanokmedhakul K, Senawong T, et al. Four new anthraquinones with histone deacetylase inhibitory activity from Ventilago denticulata roots. Molecules. 2022;27:1088. https://doi.org/10.3390/molecules27031088
Article CAS PubMed PubMed Central Google Scholar
Zhao N, Yang F, Han L, Qu Y, Ge D, Zhang H. Development of coumarin-based hydroxamates as histone deacetylase inhibitors with antitumor activities. Molecules. 2020;25:717. https://doi.org/10.3390/molecules25030717
Article CAS PubMed PubMed Central Google Scholar
Qiu X, Xiao X, Li N, Li Y. Histone deacetylases inhibitors (HDACis) as novel therapeutic application in various clinical diseases. Prog Neuro-Psychopharmacol Biol Psychiatry. 2017;72:60–72. https://doi.org/10.1016/j.pnpbp.2016.09.002
Abdizadeh T, Kalani MR, Abnous K, Tayarani-Najaran Z, Khashyarmanesh BZ, Abdizadeh R, et al. Design, synthesis and biological evaluation of novel coumarin-based benzamides as potent histone deacetylase inhibitors and anticancer agents. Eur J Med Chem. 2017;132:42–62. https://doi.org/10.1016/j.ejmech.2017.03.024
Article CAS PubMed Google Scholar
Garrido González FP, Mancilla Percino T, Synthesis, docking study and inhibitory activity of 2,6-diketopiperazines derived from α-amino acids on HDAC8. Bioorganic Chemistry 2020;214-40. https://doi.org/10.1016/j.bioorg.2020.104080
Fruhauf A, Meyer-Almes FJ. Non-hydroxamate zinc-binding groups as warheads for histone deacetylases. Molecules. 2021;26:5151. https://doi.org/10.3390/molecules26175151
Article CAS PubMed PubMed Central Google Scholar
Hu K, Wang W, Cheng H, Pan S, Ren J. Synthesis and cytotoxicity of novel chrysin derivatives. Med Chem Res. 2010;20:838–46. https://doi.org/10.1007/s00044-010-9395-1
Chakrabarti A, Oehme I, Witt O, Oliveira G, Sippl W, Romier C, et al. HDAC8: a multifaceted target for therapeutic interventions. Trends Pharmacol Sci. 2015;36:481–92. https://doi.org/10.1016/j.tips.2015.04.013
Article CAS PubMed Google Scholar
Liu C, Kou X, Wang X, Wu J, Yang A, Shen R. Novel chrysin derivatives as hidden multifunctional agents for anti-Alzheimer’s disease: design, synthesis and in vitro evaluation. Eur J Pharm Sci. 2021;166:105976. https://doi.org/10.1016/j.ejps.2021.105976
Article CAS PubMed Google Scholar
Geurs S, Clarisse D, De Bosscher K, D’Hooghe M. The zinc-binding group effect: lessons from non-hydroxamic acid vorinostat analogs. J Med Chem. 2023;66:7698–729. https://doi.org/10.1021/acs.jmedchem.3c00226
Article CAS PubMed Google Scholar
Abdel-Hamid NM, Fathy M, Koike C, Yoshida T, Okabe M, Zho K, et al. Identification of chemo and radio-resistant sub-population of stem cells in human cervical cancer HeLa cells. Cancer Invest. 2021;39:661–74. https://doi.org/10.1080/07357907.2021.1931875
Article CAS PubMed Google Scholar
Yaacoub C, Rifi M, El-Obeid D, Mawlawi H, Sabatier JM, Coutard B, et al. The cytotoxic effect of Apis mellifera venom with a synergistic potential of its two main components-melittin and PLA2-On colon cancer HCT116 cell lines. Molecules. 2021;26:2264. https://doi.org/10.3390/molecules26082264
Article CAS PubMed PubMed Central Google Scholar
Guo H, Ding H, Tang X, Liang M, Li S, Zhang J, et al. Quercetin induces pro-apoptotic autophagy via SIRT1/AMPK signaling pathway in human lung cancer cell lines A549 and H1299 in vitro. Thorac Cancer. 2021;12:1415–22. https://doi.org/10.1111/1759-7714.13925
Article CAS PubMed PubMed Central Google Scholar
Kattar SD, Surdi LM, Zabierek A, Methot JL, Middleton RE, Hughes B, et al. Parallel medicinal chemistry approaches to selective HDAC1/HDAC2 inhibitor (SHI- 1:2) optimization. Bioorg Med Chem Lett. 2009;19:1168–72. https://doi.org/10.1016/j.bmcl.2008.12.083
Article CAS PubMed Google Scholar
Daina A, Michielin O, Zoete V SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017;7:42717. Available online: http://www.swissadme.ch/index.php. Accessed September 10, 2024.
Tsantili-Kakoulidou A, Demopoulos VJ. Drug-like properties and fraction lipophilicity index as a combined metric. ADMET DMPK. 2021;9:177–90. https://doi.org/10.5599/admet.1022
Comments (0)