Design and synthesis of novel 1-1,2,3-triazolecarbohydrazides and 1,2,4-triazoloazines based on them for anticancer drug discovery

Caglevic C, Rolfo C, Gil-Bazo I, Cardona A, Sapunar J, Hirsch FR, et al. The armed conflict and the impact on patients with cancer in Ukraine: urgent considerations. JCO Glob Oncol. 2022;8:e2200123. https://doi.org/10.1200/GO.22.00123

Article  PubMed  PubMed Central  Google Scholar 

Wheless JW, Vazquez B. Rufinamide: a novel broad-spectrum antiepileptic drug. Epilepsy Curr. 2010;10:1–6. https://doi.org/10.1111/j.1535-7511.2009.01336.x

Article  PubMed  PubMed Central  Google Scholar 

Corrado C, Flugy AM, Taverna S, Raimondo S, Guggino G, Karmali R, et al. Carboxyamidotriazole-orotate inhibits the growth of imatinib-resistant chronic myeloid leukaemia cells and modulates exosomes-stimulated angiogenesis. PLoS One. 2012;7:1–13. https://doi.org/10.1371/journal.pone.0042310

Article  CAS  Google Scholar 

Pokhodylo N, Finiuk N, Klyuchivska O, Тupychak M, Matiychuk V, Goreshnik E, et al. Novel N-(4-thiocyanatophenyl)-1H-1,2,3-triazole-4-carboxamides exhibit selective cytotoxic activity at nanomolar doses towards human leukemic T-cells. Eur J Med Chem. 2022;241:11463. https://doi.org/10.1016/j.ejmech.2022.114633

Article  CAS  Google Scholar 

Pokhodylo N, Тupychak M, Finiuk N, Klyuchivska O, Stoika R. Novel hybrid benzoisothiazole-1,2,3-triazole-4-carboxamides with sub-micromolar toxicity towards human breast carcinoma cells and high affinity to DNA. J Mol Struct. 2024;1314:13874. https://doi.org/10.1016/j.molstruc.2024.138743

Article  CAS  Google Scholar 

Taddei M, Ferrini S, Giannotti L, Corsi M, Manetti F, Giannini G, et al. Synthesis and evaluation of new Hsp90 inhibitors based on a 1,4,5-trisubstituted 1,2,3-triazole scaffold. J Med Chem. 2014;57:2258–74. https://doi.org/10.1021/jm401536b

Article  CAS  PubMed  Google Scholar 

Giannini G, Battistuzzi G. Exploring in vitro and in vivo Hsp90 inhibitors activity against human protozoan parasites. Bioorg Med Chem Lett. 2015;25:462–5. https://doi.org/10.1016/j.bmcl.2014.12.048

Article  CAS  PubMed  Google Scholar 

Wang L, Xu S, Liu X, Chen X, Xiong H, Hou S, et al. Discovery of thinopyrimidine-triazole conjugates as c-Met targeting and apoptosis inducing agents. Bioorg Chem. 2018;77:370–80. https://doi.org/10.1016/j.bioorg.2018.01.037

Article  CAS  PubMed  Google Scholar 

Zhou S, Liao H, Liu M, Feng G, Fu B, Li R, et al. Discovery and biological evaluation of novel 6,7-disubstituted-4-(2-fluorophenoxy) quinoline derivatives possessing 1,2,3-triazole-4-carboxamide moiety as c-Met kinase inhibitor. Bioorg Med Chem. 2014;22:6438–52. https://doi.org/10.1016/j.bmc.2014.09.037

Article  CAS  PubMed  Google Scholar 

Reddy VG, Bonam SR, Reddy TS, Akunuri R, Naidu VGM, Nayak VL, et al. 4β-Amidotriazole linked podophyllotoxin congeners: DNA topoisomerase-IIα inhibition and potential anticancer agents for prostate cancer. Eur J Med Chem. 2018;144:595–611. https://doi.org/10.1016/j.ejmech.2017.12.050

Article  CAS  PubMed  Google Scholar 

Alshatwi AA, Athinarayanan J, Vaiyapuri Subbarayan P. Green synthesis of platinum nanoparticles that induce cell death and G2/M-phase cell cycle arrest in human cervical cancer cells. J Mater Sci Mater Med. 2015;26:1–9. https://doi.org/10.1039/D0MD00162G

Article  Google Scholar 

Bekheit MS, Mohamed HA, Abdel-Wahab BF, Fouad MA. Design and synthesis of new 1,4,5-trisubstituted triazole-bearing benzenesulphonamide moiety as selective COX-2 inhibitors. Med Chem Res. 2021;30:1125–38. https://doi.org/10.1007/s00044-021-02716-7

Article  CAS  Google Scholar 

Duan H, Arora D, Li Y, Setiadi H, Xu D, Lim HY, et al. Identification of 1,2,3-triazole derivatives that protect pancreatic β cells against endoplasmic reticulum stress-mediated dysfunction and death through the inhibition of C/EBP-homologous protein expression. Bioorg Med Chem. 2016;24:2621–30. https://doi.org/10.1016/j.bmc.2016.03.057

Article  CAS  PubMed  PubMed Central  Google Scholar 

Obianom ON, Ai Y, Li Y, Yang W, Guo D, Yang H, et al. Triazole-based inhibitors of the Wnt/β-catenin signaling pathway improve glucose and lipid metabolisms in diet-induced obese mice. J Med Chem. 2019;62:727–41. https://doi.org/10.1021/acs.jmedchem.8b01408

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sileikyte J, Devereaux J, de Jong J, Schiavone M, Jones K, Nilsen A, et al. Second-generation inhibitors of the mitochondrial permeability transition pore with improved plasma stability. ChemMedChem. 2019;14:1771–82. https://doi.org/10.1002/cmdc.201900376

Article  CAS  PubMed  Google Scholar 

Pokhodylo N, Manko N, Finiuk N, Klyuchivska O, Matiychuk V, Obushak M, et al. Primary discovery of 1-aryl-5-substituted-1H-1,2,3-triazole-4-carboxamides as promising antimicrobial agents. J Mol Struct. 2021;1246:131146. https://doi.org/10.1016/j.molstruc.2021.131146

Article  CAS  Google Scholar 

Wang ZJ, Gao Y, Hou YL, Zhang C, Yu SJ, Bian Q, et al. Design, synthesis, and fungicidal evaluation of a series of novel 5-methyl-1H-1,2,3-trizole-4-carboxyl amide and ester analogues. Eur J Med Chem. 2014;86:87–94. https://doi.org/10.1016/j.ejmech.2014.08.029

Article  CAS  PubMed  Google Scholar 

Cheng H, Wan J, Lin MI, Liu Y, Lu X, Liu J, et al. Design, synthesis, and in vitro biological evaluation of 1H-1,2,3-triazole-4-carboxamide derivatives as new anti-influenza A agents targeting virus nucleoprotein. J Med Chem. 2012;55:2144–53. https://doi.org/10.1021/jm2013503

Article  CAS  PubMed  Google Scholar 

Jayashree BS, Nikhil PS, Paul S. Bioisosterism in drug discovery and development-an overview. Medicinal Chemistry. 2022;18:915–25. https://doi.org/10.2174/1573406418666220127124228

Article  CAS  PubMed  Google Scholar 

Sun S, Jia Q, Zhang Z. Applications of amide isosteres in medicinal chemistry. Bioorg Med Chem Lett. 2019;29:2535–50. https://doi.org/10.1016/j.bmcl.2019.07.033

Article  CAS  PubMed  Google Scholar 

Kumari S, Carmona AV, Tiwari AK, Trippier PC. Amide bond bioisosteres: Strategies, synthesis, and successes. J Med Chem. 2020;63:12290–358. https://doi.org/10.1021/acs.jmedchem.0c00530

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pokhodylo N, Shyyka O, Finiuk N, Stoika R. Selected 5-amino-1-aryl-1H-1,2,3-triazole scaffolds as promising antiproliferative agents. Ukr Biochem J. 2020;92:23–32. https://doi.org/10.15407/ubj92.05.023

Article  CAS  Google Scholar 

Baucom KD, Jones SC, Roberts SW. 1,1′-Carbonyldiimidazole (CDI) mediated coupling and cyclization to generate [1,2,4]triazolo[4,3-a]pyridines. Org Lett. 2016;18:560–3. https://doi.org/10.1021/acs.orglett.5b03589

Article  CAS  PubMed  Google Scholar 

Wang Y, Sarris K, Sauer DR, Djuric SW. A simple and efficient automatable one step synthesis of triazolopyridines from carboxylic acids. Tetrahedron Lett. 2007;48:2237–40. https://doi.org/10.1016/j.tetlet.2007.02.004

Higgins MA, Marcin LR, Zusi FC, Gentles R, Ding M, Pearce BC, et al. Triazolopyridine ethers as potent, orally active mGlu2 positive allosteric modulators for treating schizophrenia. Bioorg Med Chem. 2017;25:496–513. https://doi.org/10.1016/j.bmc.2016.11.018

Roberge JY, Yu G, Mikkilineni A, Wu X, Zhu Y, Lawrence RM, et al. Synthesis of triazolopyridines and triazolopyrimidines using a modified Mitsunobu reaction. Arkivoc 2007:132–47. https://doi.org/10.3998/ark.5550190.0008.c10

Gandikota NM, Bolla RS, Viswanath IVK, Bethi S. A facile synthesis of amide derivatives of [1,2,4]triazolo[4,3-a]pyridine. Asian J Chem. 2017;29:1920–4. https://doi.org/10.14233/ajchem.2017.20624

Yang F, Jian XE, Diao PC, Huo XS, You WW, Zhao PL. Synthesis and biological evaluation of 3,6-diaryl-[1,2,4]triazolo[4,3-a]pyridine analogues as new potent tubulin polymerization inhibitors. Eur J Med Chem. 2020;204:112625. https://doi.org/10.1016/j.ejmech.2020.112625

Lin MY, Ji TY, Zheng M, Chen YY, Xu SY, You WW, et al. Efficient synthesis and evaluation of novel 6-arylamino-[1,2,4]triazolo [4,3-a]pyridine derivatives as antiproliferative agents. Bioorg Med Chem Lett. 2022;75:128978. https://doi.org/10.1016/j.bmcl.2022.128978

Pokhodylo NT, Shyyka OY, Matiychuk VS, Obushak MD, Pavlyuk VV. A novel base‐solvent controlled chemoselective azide attack on an ester group versus keto in alkyl 3‐substituted 3‐oxopropanoates: mechanistic insights. ChemistrySelect. 2017;2:5871–6. https://doi.org/10.1002/slct.201700577

Article  CAS  Google Scholar 

Pokhodylo NT, Shyyka OY, Goreshnik EA, Obushak MD. 4-Phosphonated or 4-Free 1,2,3-Triazoles: What Controls the Dimroth Reaction of Arylazides with 2-Oxopropylphosphonates? ChemistrySelect. 2020;5:260–4. https://doi.org/10.1002/slct.201904688

Article  CAS  Google Scholar 

Pokhodylo NT, Shyyka OY, Obushak MD. Convenient synthetic path to ethyl 1-aryl-5-formyl-1H-1,2,3-triazole-4-carboxylates and 1-aryl-1,5-dihydro-4H-[1,2,3]triazolo[4,5-d]pyridazin-4-ones. Chem Heterocycl Compd. 2018;54:773–9. https://doi.org/10.1007/s10593-018-2348-1

Blastik ZE, Klepetářová B, Beier P. Enamine‐mediated azide‐ketone [3+2]cycloaddition of azidoperfluoroalkanes. ChemistrySelect. 2018;3:7045–8. https://doi.org/10.1002/slct.201801344

Article  CAS  Google Scholar 

Olesen PH, Sørensen AR, Ursø B, Kurtzhals P, Bowler AN,

Comments (0)

No login
gif