Caglevic C, Rolfo C, Gil-Bazo I, Cardona A, Sapunar J, Hirsch FR, et al. The armed conflict and the impact on patients with cancer in Ukraine: urgent considerations. JCO Glob Oncol. 2022;8:e2200123. https://doi.org/10.1200/GO.22.00123
Article PubMed PubMed Central Google Scholar
Wheless JW, Vazquez B. Rufinamide: a novel broad-spectrum antiepileptic drug. Epilepsy Curr. 2010;10:1–6. https://doi.org/10.1111/j.1535-7511.2009.01336.x
Article PubMed PubMed Central Google Scholar
Corrado C, Flugy AM, Taverna S, Raimondo S, Guggino G, Karmali R, et al. Carboxyamidotriazole-orotate inhibits the growth of imatinib-resistant chronic myeloid leukaemia cells and modulates exosomes-stimulated angiogenesis. PLoS One. 2012;7:1–13. https://doi.org/10.1371/journal.pone.0042310
Pokhodylo N, Finiuk N, Klyuchivska O, Тupychak M, Matiychuk V, Goreshnik E, et al. Novel N-(4-thiocyanatophenyl)-1H-1,2,3-triazole-4-carboxamides exhibit selective cytotoxic activity at nanomolar doses towards human leukemic T-cells. Eur J Med Chem. 2022;241:11463. https://doi.org/10.1016/j.ejmech.2022.114633
Pokhodylo N, Тupychak M, Finiuk N, Klyuchivska O, Stoika R. Novel hybrid benzoisothiazole-1,2,3-triazole-4-carboxamides with sub-micromolar toxicity towards human breast carcinoma cells and high affinity to DNA. J Mol Struct. 2024;1314:13874. https://doi.org/10.1016/j.molstruc.2024.138743
Taddei M, Ferrini S, Giannotti L, Corsi M, Manetti F, Giannini G, et al. Synthesis and evaluation of new Hsp90 inhibitors based on a 1,4,5-trisubstituted 1,2,3-triazole scaffold. J Med Chem. 2014;57:2258–74. https://doi.org/10.1021/jm401536b
Article CAS PubMed Google Scholar
Giannini G, Battistuzzi G. Exploring in vitro and in vivo Hsp90 inhibitors activity against human protozoan parasites. Bioorg Med Chem Lett. 2015;25:462–5. https://doi.org/10.1016/j.bmcl.2014.12.048
Article CAS PubMed Google Scholar
Wang L, Xu S, Liu X, Chen X, Xiong H, Hou S, et al. Discovery of thinopyrimidine-triazole conjugates as c-Met targeting and apoptosis inducing agents. Bioorg Chem. 2018;77:370–80. https://doi.org/10.1016/j.bioorg.2018.01.037
Article CAS PubMed Google Scholar
Zhou S, Liao H, Liu M, Feng G, Fu B, Li R, et al. Discovery and biological evaluation of novel 6,7-disubstituted-4-(2-fluorophenoxy) quinoline derivatives possessing 1,2,3-triazole-4-carboxamide moiety as c-Met kinase inhibitor. Bioorg Med Chem. 2014;22:6438–52. https://doi.org/10.1016/j.bmc.2014.09.037
Article CAS PubMed Google Scholar
Reddy VG, Bonam SR, Reddy TS, Akunuri R, Naidu VGM, Nayak VL, et al. 4β-Amidotriazole linked podophyllotoxin congeners: DNA topoisomerase-IIα inhibition and potential anticancer agents for prostate cancer. Eur J Med Chem. 2018;144:595–611. https://doi.org/10.1016/j.ejmech.2017.12.050
Article CAS PubMed Google Scholar
Alshatwi AA, Athinarayanan J, Vaiyapuri Subbarayan P. Green synthesis of platinum nanoparticles that induce cell death and G2/M-phase cell cycle arrest in human cervical cancer cells. J Mater Sci Mater Med. 2015;26:1–9. https://doi.org/10.1039/D0MD00162G
Bekheit MS, Mohamed HA, Abdel-Wahab BF, Fouad MA. Design and synthesis of new 1,4,5-trisubstituted triazole-bearing benzenesulphonamide moiety as selective COX-2 inhibitors. Med Chem Res. 2021;30:1125–38. https://doi.org/10.1007/s00044-021-02716-7
Duan H, Arora D, Li Y, Setiadi H, Xu D, Lim HY, et al. Identification of 1,2,3-triazole derivatives that protect pancreatic β cells against endoplasmic reticulum stress-mediated dysfunction and death through the inhibition of C/EBP-homologous protein expression. Bioorg Med Chem. 2016;24:2621–30. https://doi.org/10.1016/j.bmc.2016.03.057
Article CAS PubMed PubMed Central Google Scholar
Obianom ON, Ai Y, Li Y, Yang W, Guo D, Yang H, et al. Triazole-based inhibitors of the Wnt/β-catenin signaling pathway improve glucose and lipid metabolisms in diet-induced obese mice. J Med Chem. 2019;62:727–41. https://doi.org/10.1021/acs.jmedchem.8b01408
Article CAS PubMed PubMed Central Google Scholar
Sileikyte J, Devereaux J, de Jong J, Schiavone M, Jones K, Nilsen A, et al. Second-generation inhibitors of the mitochondrial permeability transition pore with improved plasma stability. ChemMedChem. 2019;14:1771–82. https://doi.org/10.1002/cmdc.201900376
Article CAS PubMed Google Scholar
Pokhodylo N, Manko N, Finiuk N, Klyuchivska O, Matiychuk V, Obushak M, et al. Primary discovery of 1-aryl-5-substituted-1H-1,2,3-triazole-4-carboxamides as promising antimicrobial agents. J Mol Struct. 2021;1246:131146. https://doi.org/10.1016/j.molstruc.2021.131146
Wang ZJ, Gao Y, Hou YL, Zhang C, Yu SJ, Bian Q, et al. Design, synthesis, and fungicidal evaluation of a series of novel 5-methyl-1H-1,2,3-trizole-4-carboxyl amide and ester analogues. Eur J Med Chem. 2014;86:87–94. https://doi.org/10.1016/j.ejmech.2014.08.029
Article CAS PubMed Google Scholar
Cheng H, Wan J, Lin MI, Liu Y, Lu X, Liu J, et al. Design, synthesis, and in vitro biological evaluation of 1H-1,2,3-triazole-4-carboxamide derivatives as new anti-influenza A agents targeting virus nucleoprotein. J Med Chem. 2012;55:2144–53. https://doi.org/10.1021/jm2013503
Article CAS PubMed Google Scholar
Jayashree BS, Nikhil PS, Paul S. Bioisosterism in drug discovery and development-an overview. Medicinal Chemistry. 2022;18:915–25. https://doi.org/10.2174/1573406418666220127124228
Article CAS PubMed Google Scholar
Sun S, Jia Q, Zhang Z. Applications of amide isosteres in medicinal chemistry. Bioorg Med Chem Lett. 2019;29:2535–50. https://doi.org/10.1016/j.bmcl.2019.07.033
Article CAS PubMed Google Scholar
Kumari S, Carmona AV, Tiwari AK, Trippier PC. Amide bond bioisosteres: Strategies, synthesis, and successes. J Med Chem. 2020;63:12290–358. https://doi.org/10.1021/acs.jmedchem.0c00530
Article CAS PubMed PubMed Central Google Scholar
Pokhodylo N, Shyyka O, Finiuk N, Stoika R. Selected 5-amino-1-aryl-1H-1,2,3-triazole scaffolds as promising antiproliferative agents. Ukr Biochem J. 2020;92:23–32. https://doi.org/10.15407/ubj92.05.023
Baucom KD, Jones SC, Roberts SW. 1,1′-Carbonyldiimidazole (CDI) mediated coupling and cyclization to generate [1,2,4]triazolo[4,3-a]pyridines. Org Lett. 2016;18:560–3. https://doi.org/10.1021/acs.orglett.5b03589
Article CAS PubMed Google Scholar
Wang Y, Sarris K, Sauer DR, Djuric SW. A simple and efficient automatable one step synthesis of triazolopyridines from carboxylic acids. Tetrahedron Lett. 2007;48:2237–40. https://doi.org/10.1016/j.tetlet.2007.02.004
Higgins MA, Marcin LR, Zusi FC, Gentles R, Ding M, Pearce BC, et al. Triazolopyridine ethers as potent, orally active mGlu2 positive allosteric modulators for treating schizophrenia. Bioorg Med Chem. 2017;25:496–513. https://doi.org/10.1016/j.bmc.2016.11.018
Roberge JY, Yu G, Mikkilineni A, Wu X, Zhu Y, Lawrence RM, et al. Synthesis of triazolopyridines and triazolopyrimidines using a modified Mitsunobu reaction. Arkivoc 2007:132–47. https://doi.org/10.3998/ark.5550190.0008.c10
Gandikota NM, Bolla RS, Viswanath IVK, Bethi S. A facile synthesis of amide derivatives of [1,2,4]triazolo[4,3-a]pyridine. Asian J Chem. 2017;29:1920–4. https://doi.org/10.14233/ajchem.2017.20624
Yang F, Jian XE, Diao PC, Huo XS, You WW, Zhao PL. Synthesis and biological evaluation of 3,6-diaryl-[1,2,4]triazolo[4,3-a]pyridine analogues as new potent tubulin polymerization inhibitors. Eur J Med Chem. 2020;204:112625. https://doi.org/10.1016/j.ejmech.2020.112625
Lin MY, Ji TY, Zheng M, Chen YY, Xu SY, You WW, et al. Efficient synthesis and evaluation of novel 6-arylamino-[1,2,4]triazolo [4,3-a]pyridine derivatives as antiproliferative agents. Bioorg Med Chem Lett. 2022;75:128978. https://doi.org/10.1016/j.bmcl.2022.128978
Pokhodylo NT, Shyyka OY, Matiychuk VS, Obushak MD, Pavlyuk VV. A novel base‐solvent controlled chemoselective azide attack on an ester group versus keto in alkyl 3‐substituted 3‐oxopropanoates: mechanistic insights. ChemistrySelect. 2017;2:5871–6. https://doi.org/10.1002/slct.201700577
Pokhodylo NT, Shyyka OY, Goreshnik EA, Obushak MD. 4-Phosphonated or 4-Free 1,2,3-Triazoles: What Controls the Dimroth Reaction of Arylazides with 2-Oxopropylphosphonates? ChemistrySelect. 2020;5:260–4. https://doi.org/10.1002/slct.201904688
Pokhodylo NT, Shyyka OY, Obushak MD. Convenient synthetic path to ethyl 1-aryl-5-formyl-1H-1,2,3-triazole-4-carboxylates and 1-aryl-1,5-dihydro-4H-[1,2,3]triazolo[4,5-d]pyridazin-4-ones. Chem Heterocycl Compd. 2018;54:773–9. https://doi.org/10.1007/s10593-018-2348-1
Blastik ZE, Klepetářová B, Beier P. Enamine‐mediated azide‐ketone [3+2]cycloaddition of azidoperfluoroalkanes. ChemistrySelect. 2018;3:7045–8. https://doi.org/10.1002/slct.201801344
Olesen PH, Sørensen AR, Ursø B, Kurtzhals P, Bowler AN,
Comments (0)