Wu QP, Ye DP, Wu KL, Fang L, Zeng SJ, Li L. Pholidota advena (Par. & Rchb. f.) Hook. f., A newly recorded species of Orchidaceae from China. J Trop Subtrop Bot. 2021;29:406–8. https://doi.org/10.11926/jtsb.4367
Wang DL, Lin FX, Tang MM, Zhou XM, Yi JL. Two new phenanthrene derivatives from Pholidota chinensis. Phytochem Lett. 2021;43:123–5. https://doi.org/10.1016/j.phytol.2021.03.024
Liu BC, Chen JY, Zhang WJ, Huang YZ, Zhao YQ, Juneidi S, et al. The gastrodin biosynthetic pathway in Pholidota chinensis Lindl. revealed by transcriptome and metabolome profiling. Front Plant Sci. 2022;13:1024239. https://doi.org/10.3389/fpls.2022.1024239
Article PubMed PubMed Central Google Scholar
Tsai CM, Chen CY, Le PK, Wang YH, Lam SH. Bis(4-glycosyloxybenzyl) 2-isobutyltartrate and dihydrophenanthrene derivatives from the pseudobulbs of Pholidota chinensis and their anti-inflammatory activity. Phytochemistry. 2023;206:113528. https://doi.org/10.1016/j.phytochem.2022.113528
Article PubMed CAS Google Scholar
Wang J, Matsuzaki K, Kitanaka S. Stilbene derivatives from Pholidota chinensis and their anti-inflammatory activity. Chem Pharm Bull. 2006;54:1216–8. https://doi.org/10.1248/cpb.54.1216
Wang J, Wang LY, Kitanaka S. Stilbene and dihydrophenanthrene derivatives from Pholidota chinensis and their nitric oxide inhibitory and radical-scavenging activities. J Nat Med. 2007;61:381–6. https://doi.org/10.1007/s11418-007-0162-7
Xue YR, Yao S, Liu Q, Peng ZL, Deng QQ, Liu B, et al. Dihydro-stilbene gigantol relieves CCl4-induced hepatic oxidative stress and inflammation in mice via inhibiting C5b-9 formation in the liver. Acta Pharmacol Sin. 2020;41:1433–45. https://doi.org/10.1038/s41401-020-0406-6
Article PubMed PubMed Central CAS Google Scholar
Rueda DC, Schöffmann A, De Mieri M, Raith M, Jähne EA, Hering S, et al. Identification of dihydrostilbenes in Pholidota chinensis as a new scaffold for GABAA receptor modulators. Bioorg Med Chem. 2014;22:1276–84. https://doi.org/10.1016/j.bmc.2014.01.008
Article PubMed CAS Google Scholar
Yang HH, Wu YJ, Gan CJ, Yue TL, Yuan YH. Characterization and antioxidant activity of a novel polysaccharide from Pholidota chinensis Lindl. Carbohydr Polym. 2016;138:327–34. https://doi.org/10.1016/j.carbpol.2015.11.071
Article PubMed CAS Google Scholar
Luo DH, Wang ZJ, Li ZM, Yu XQ. Structure of an entangled heteropolysaccharide from Pholidota chinensis Lindl and its antioxidant and anti-cancer properties. Int J Biol Macromol. 2018;112:921–8. https://doi.org/10.1016/j.ijbiomac.2018.02.051
Article PubMed CAS Google Scholar
Ti HH, Zhuang ZX, Li Y, Wei GZ, Wang F. Three new phenanthrenes from Pholidota chinensis Lindl. and their antibacterial activity. Nat Prod Res. 2022;36:2056–62. https://doi.org/10.1080/14786419.2020.1845168
Article PubMed CAS Google Scholar
Chen YC, Pan WX, Wang YH, Tsai CM, Hwang TL, Lam SH. Dihydrophenanthropyrans derived from the pseudobulbs of Pholidota chinensis alleviates neutrophilic inflammation by inhibiting MAPKs and calcium. Fitoterapia. 2024;176:106015. https://doi.org/10.1016/j.fitote.2024.106015
Article PubMed CAS Google Scholar
Scheltens P, De Strooper B, Kivipelto M, Holstege H, Chételat G, Teunissen CE, et al. Alzheimer’s disease. Lancet. 2021;397:1577–90. https://doi.org/10.1016/S0140-6736(20)32205-4
Article PubMed PubMed Central CAS Google Scholar
Tok F. Recent studies on heterocyclic cholinesterase inhibitors against Alzheimer’s disease. Chem Biodivers. https://doi.org/10.1002/cbdv.202402837
Darvesh S, Cash MK, Reid GA, Martin E, Mitnitski A, Geula C. Butyrylcholinesterase is associated with β-amyloid plaques in the transgenic APPSWE/PSEN1dE9 mouse model of Alzheimer disease. J Neuropathol Exp Neurol. 2012;71:2–14. https://doi.org/10.1097/NEN.0b013e31823cc7a6
Article PubMed CAS Google Scholar
Singh B, Day CM, Abdella S, Garg S. Alzheimer’s disease current therapies, novel drug delivery systems and future directions for better disease management. J Control Release. 2024;367:402–24. https://doi.org/10.1016/j.jconrel.2024.01.047
Article PubMed CAS Google Scholar
Mahajan K, Sharma S, Gautam RK, Goyal R, Mishra DK, Singla RK. Insights on therapeutic approaches of natural anti-Alzheimer’s agents in the management of Alzheimer’s disease: a future perspective. J Alzheimers Dis. 2024;102:897–923. https://doi.org/10.1177/13872877241296557
Idris M, Parumasivam T, Awang K, Zahari A, Litaudon M, Apel C, et al. Bioassay-guided isolation of acetylcholinesterase and butyrylcholinesterase inhibitors from Horsfieldia tomentosa fruits (Myristicaceae). Phytochem Lett. 2025;65:133–40. https://doi.org/10.1016/j.phytol.2025.01.007
Hasnan MHH, Sivasothy Y, Khaw KY, Nafiah MA, Hazni H, Litaudon M, et al. N-methyl costaricine and costaricine, two potent butyrylcholinesterase inhibitors from Alseodaphne pendulifolia Gamb. Int J Mol Sci. 2023;24:10699. https://doi.org/10.3390/ijms241310699
Yenigun S, Ipek Y, Marah S, Demirtas I, Ozen T. DNA protection, molecular docking, antioxidant, antibacterial, enzyme inhibition, and enzyme kinetic studies for parietin, isolated from Xanthoria parietina (L.) Th. Fr. J Biomol Struct Dyn. 2024;42:848–62. https://doi.org/10.1080/07391102.2023.2196693
Article PubMed CAS Google Scholar
Xiao H, Wang H, Sun SW, Ma JY, Wang H, Yin YC, et al. Identification of aurones and chalcones as the main contributors to xanthine oxidase inhibitory activity of snow chrysanthemum. Food Biosci. 2024;61:104650. https://doi.org/10.1016/j.fbio.2024.104650
Li ZZ, Wang H, Sun SW, Shao ZB, Lv CY, Dong XY, et al. Ellagitannins from pomegranate (Punica granatum L.) flower with xanthine oxidase and α-glucosidase inhibitory activities. J Func Foods. 2024;116:106153. https://doi.org/10.1016/j.jff.2024.106153
Zhou LY, Wang JM, Huang YJ, Yu XH, Lu B, Hua Y. Two new glycosides isolated from Polygala sibirica L. var. megalopha Fr. Phytochem Lett. 2016;16:174–7. https://doi.org/10.1016/j.phytol.2016.04.008
Leong YW, Kang CC, Harrison LJ, Powell AD. Phenanthrenes, dihydrophenanthrenes and bibenzyls from the orchid Bulbophyllum vaginatum. Phytochemistry. 1997;44:157–65. https://doi.org/10.1016/S0031-9422(96)00387-1
Majumder PL, Roychowdhury M, Chakraborty S. Thunalbene, a stilbene derivative from the orchid Thunis alba. Phytochemistry. 1998;49:2375–8. https://doi.org/10.1016/S0031-9422(98)00433-6
Hanawa F, Yamada T, Nakashima T. Phytoalexins from Pinus strobus bark infected with pinewood nematode, Bursaphelenchus xylophilus. Phytochemistry. 2001;57:223–8. https://doi.org/10.1016/S0031-9422(00)00514-8
Article PubMed CAS Google Scholar
Suga T, Ohta S, Munesada K, Ide N, Kurokawa M, Shimazu M, et al. Endogenous pine wood nematicidal substances in pines, Pinus massoniana, P. strobus and P. palustris. Phytochemistry. 1993;33:1395–401. https://doi.org/10.1016/0031-9422(93)85098-C
Barron D, Ratinaud Y, Rambousek S, Brinon B, Pinta MN, Sanders MJ, et al. Unambiguous characterization of commercial natural (dihydro)phenanthrene compounds is vital in the discovery of AMPK activators. J Agric Food Chem. 2024;72:14993–5004. https://doi.org/10.1021/acs.jafc.4c01616
Article PubMed CAS Google Scholar
Jung HA, Min BS, Yokozawa T, Lee JH, Kim YS, Choi JS. Anti-Alzheimer and antioxidant activities of Coptidis Rhizoma alkaloids. Biol Pharm Bull. 2009;32:1433–8. https://doi.org/10.1248/bpb.32.1433
Article PubMed CAS Google Scholar
Hung TM, Lee JS, Chuong NN, Kim JA, Oh SH, Woo MH, et al. Kinetics and molecular docking studies of cholinesterase inhibitors derived from water layer of Lycopodiella cernua (L.) Pic. Serm. (II). Chem-Biol Interact. 2015;240:74–82.
Comments (0)