Prenylated flavonoids icariin and icaritin for drug discovery: structural modifications and bioactivity studies

Ulbricht CE, Natural Standard Research Collaboration. An evidence-based systematic review of Yin Yang Huo (Epimedium spp.) by the Natural Standard Research Collaboration. J Diet Suppl. 2016;13:136–64. https://doi.org/10.3109/19390211.2015.1008817

Article  PubMed  Google Scholar 

Xu Y, Liu L, Liu S, He Y, Li R, Ge F. The taxonomic relevance of flower colour for Epimedium (Berberidaceae), with morphological and nomenclatural notes for five species from China. PhytoKeys. 2019;118:33–64. https://doi.org/10.3897/phytokeys.118.30268

Article  Google Scholar 

Zhang H, Wang H, Wei J, Chen X, Sun M, Ouyang H, et al. Comparison of the active compositions between raw and processed Epimedium from different species. Molecules. 2018;23:1656. https://doi.org/10.3390/molecules23071656

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ma H, He X, Yang Y, Li M, Hao D, Jia Z. The genus Epimedium: an ethnopharmacological and phytochemical review. J Ethnopharmacol. 2011;134:519–41. https://doi.org/10.1016/j.jep.2011.01.001

Article  PubMed  CAS  Google Scholar 

Sun S, Liu L, Tian X, Guo Y, Cao Y, Mei Y, et al. Icariin attenuates high glucose-induced apoptosis, oxidative stress, and inflammation in human umbilical venous endothelial cells. Planta Med. 2019;85:473–82. https://doi.org/10.1055/a-0837-0975

Article  PubMed  CAS  Google Scholar 

Liu FY, Ding DN, Wang YR, Liu SX, Peng C, Shen F, et al. Icariin as a potential anticancer agent: a review of its biological effects on various cancers. Front Pharmacol. 2023;14:1216363. https://doi.org/10.3389/fphar.2023.1216363

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gao Y, Shi W, Tu C, Li P, Zhao G, Xiao X, et al. Immunostimulatory activity and structure-activity relationship of epimedin B from Epimedium brevicornu Maxim. Front Pharmacol. 2022;13:1015846. https://doi.org/10.3389/fphar.2022.1015846

Article  PubMed  PubMed Central  CAS  Google Scholar 

Li C, Li Q, Mei Q, Lu T. Pharmacological effects and pharmacokinetic properties of icariin, the major bioactive component in Herba Epimedii. Life Sci. 2015;126:57–68. https://doi.org/10.1016/j.lfs.2015.01.006

Article  PubMed  CAS  Google Scholar 

Seyedi Z, Amiri MS, Mohammadzadeh V, Hashemzadeh A, Haddad-Mashadrizeh A, Mashreghi M, et al. Icariin: a promising natural product in biomedicine and tissue engineering. J Funct Biomater. 2023;14:44. https://doi.org/10.3390/jfb14010044

Article  PubMed  PubMed Central  CAS  Google Scholar 

Liu Y, Yang H, Xiong J, Zhao J, Guo M, Chen J, et al. Icariin as an emerging candidate drug for anticancer treatment: current status and perspective. Biomed Pharmacother. 2023;157:113991. https://doi.org/10.1016/j.biopha.2022.113991

Article  PubMed  CAS  Google Scholar 

Mou Z, Chen Y, Hu J, Hu Y, Zou L, Chen X, et al. Icaritin inhibits the progression of urothelial cancer by suppressing PADI2-mediated neutrophil infiltration and neutrophil extracellular trap formation. Acta Pharm Sin B. 2024;14:3916–30. https://doi.org/10.1016/j.apsb.2024.06.029

Article  PubMed  PubMed Central  CAS  Google Scholar 

Jin J, Wang H, Hua X, Chen D, Huang C, Chen Z. An outline for the pharmacological effect of icariin in the nervous system. Eur J Pharmacol. 2019;842:20–32. https://doi.org/10.1016/j.ejphar.2018.10.006

Article  PubMed  CAS  Google Scholar 

Szabó R, Rácz CP, Dulf FV. Bioavailability improvement strategies for icariin and its derivates: a review. Int J Mol Sci. 2022;23:7519. https://doi.org/10.3390/ijms23147519

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kim DH, Jung HA, Sohn HS, Kim JW, Choi JS. Potential of icariin metabolites from Epimedium koreanum nakai as antidiabetic therapeutic agents. Molecules. 2017;22:986. https://doi.org/10.3390/molecules22060986

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zhang H, Wu X, Wang J, Wang M, Wang X, Shen T, et al. Flavonoids from the leaves of Epimedium Koreanum Nakai and their potential cytotoxic activities. Nat Prod Res. 2020;34:1256–63. https://doi.org/10.1080/14786419.2018.1560283

Article  PubMed  CAS  Google Scholar 

Zhang S, Luo J, Dong Y, Wang Z, Xiao W, Zhao L. Biotransformation of the total flavonoid extract of epimedium into icaritin by two thermostable glycosidases from Dictyoglomus thermophilum DSM3960. Process Biochem. 2021;105:8–18. https://doi.org/10.1016/j.procbio.2021.03.002

Article  CAS  Google Scholar 

Han F, Kim JH, Lee IS. Microbial transformation of icariin and its derivatives. Nat Prod Res. 2022;36:4103–13. https://doi.org/10.1080/14786419.2021.1975702

Article  PubMed  CAS  Google Scholar 

Huong NT, Son NT. Icaritin: a phytomolecule with enormous pharmacological values. Phytochemistry. 2023;213:113772. https://doi.org/10.1016/j.phytochem.2023.113772

Article  PubMed  CAS  Google Scholar 

Gani I, Jameel S, Bhat SA, Amin H, Bhat KA. Prenylated flavonoids of genus Epimedium: phytochemistry, estimation and synthesis. ChemistrySelect. 2023;8:e202204263. https://doi.org/10.1002/slct.202204263

Article  CAS  Google Scholar 

Luo P, An Y, He J, Xing X, Zhang Q, Liu X, et al. Icaritin with autophagy/mitophagy inhibitors synergistically enhances anticancer efficacy and apoptotic effects through PINK1/Parkin-mediated mitophagy in hepatocellular carcinoma. Cancer Lett. 2024;587:216621. https://doi.org/10.1016/j.canlet.2024.216621

Article  PubMed  CAS  Google Scholar 

Zhou X, Wu D, Mi T, Li R, Guo T, Li W. Icaritin activates p53 and inhibits aerobic glycolysis in liver cancer cells. Chem Biol Interact. 2024;392:110926. https://doi.org/10.1016/j.cbi.2024.110926

Article  PubMed  CAS  Google Scholar 

Sun Q, Yang R, Chen T, Li S, Wang H, Kong D, et al. Icaritin attenuates ischemia-reperfusion injury by anti-inflammation, anti-oxidative stress, and anti-autophagy in mouse liver. Int Immunopharmacol. 2024;138:112533. https://doi.org/10.1016/j.intimp.2024.112533

Article  PubMed  CAS  Google Scholar 

Xu W, Li Y, Liu L, Xie J, Hu Z, Kuang S, et al. Icaritin-curcumol activates CD8+ T cells through regulation of gut microbiota and the DNMT1/IGFBP2 axis to suppress the development of prostate cancer. J Exp Clin Cancer Res. 2024;43:149. https://doi.org/10.1186/s13046-024-03063-2

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zhang D, Liang J, Qu S, Xu C, Kan H, Dong K, et al. Metabolomics and pharmacodynamic analysis unveil the therapeutic role of icaritin on osteoporosis rats. J Pharm Biomed Anal. 2024;241:115979. https://doi.org/10.1016/j.jpba.2024.115979

Article  PubMed  CAS  Google Scholar 

Zhang C, Wang X, Zhang C. Icaritin inhibits CDK2 expression and activity to interfere with tumor progression. iScience. 2022;25:104991. https://doi.org/10.1016/j.isci.2022.104991

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wei CY, Wang YP, Wang J, Zhang L. Advance in chemical synthesis and structural modification of icaritin. Chem Reagent. 2023;45:1–8. https://doi.org/10.13822/j.cnki.hxsj.2023.0478

Article  CAS  Google Scholar 

Cui HQ, Wang XH, He YQ, Wang YH, Lan Q, Pu Y, et al. Advance on the structural modification and activities of icaritin derivatives. Chem Res Appl. 2020;32:2113–23.

Google Scholar 

Ding H, Li J, Meng K. Polyhydroxy benzopyran ketone compounds as estrogen receptor ER-α36 regulators and their preparation, pharmaceutical compositions and use in the treatment of cancer. 2013;WO2013104263

Meng K, Zhang Y, Fang F, Shang X. Improved synthesis method of SNG-1153. 2017;CN107216302

Ye HY, Liu J, Lou YJ. Preparation of two derivatives from icariin and investigation of their estrogen-like effects. J Zhejiang Univ Med Sci. 2005;34:131–6.

Comments (0)

No login
gif