Hampel H, Mesulam MM, Cuello AC, Farlow MR, Giacobini E, Grossberg GT, et al. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain. 2018;141(7):1917–33. https://doi.org/10.1093/brain/awy132
Article PubMed PubMed Central Google Scholar
Zhang J, Zhang Y, Wang J, Xia Y, Zhang J, Chen L. Recent advances in Alzheimer’s disease: mechanisms, clinical trials and new drug development strategies. Sig Transduct Target Ther. 2024;9(1):1–35. https://doi.org/10.1038/s41392-024-01911-3
Petrova T, Orellana C, Jelic V, Oeksengaard AR, Snaedal J, Høgh P, et al. Cholinergic dysfunction, neurodegeneration, and amyloid-beta pathology in neurodegenerative diseases. Psychiatry Res Neuroimaging. 2020;302:111099. https://doi.org/10.1016/j.pscychresns.2020.111099
Nayak V, Patra S, Rout S, Jena AB, Sharma R, Pattanaik KP, et al. Regulation of neuroinflammation in Alzheimer’s disease via nanoparticle-loaded phytocompounds with anti-inflammatory and autophagy-inducing properties. Phytomedicine. 2024;122:155150. https://doi.org/10.1016/j.phymed.2023.155150
Article CAS PubMed Google Scholar
Haake A, Nguyen K, Friedman L, Chakkamparambil B, Grossberg GT. An update on the utility and safety of cholinesterase inhibitors for the treatment of Alzheimer’s disease. Expert Opin Drug Saf. 2020;19(2):147–57. https://doi.org/10.1080/14740338.2020.1721456
Article CAS PubMed Google Scholar
Sharma K. Cholinesterase inhibitors as Alzheimer’s therapeutics (Review). Mol Med Rep. 2019;20(2):1479–87. https://doi.org/10.3892/mmr.2019.10374
Article CAS PubMed PubMed Central Google Scholar
Sridhar GR Acetylcholinesterase inhibitors (Galantamine, Rivastigmine, and Donepezil). In: Riederer P, Laux G, Nagatsu T, Le W, Riederer C, eds. NeuroPsychopharmacotherapy. Springer International Publishing; 2020:1–13. https://doi.org/10.1007/978-3-319-56015-1_418-1
Xu JY, Chen C. Endocannabinoids in synaptic plasticity and neuroprotection. Neuroscientist. 2015;21(2):152–68. https://doi.org/10.1177/1073858414524632
Article CAS PubMed Google Scholar
Winters BL, Vaughan CW. Mechanisms of endocannabinoid control of synaptic plasticity. Neuropharmacology. 2021;197:108736. https://doi.org/10.1016/j.neuropharm.2021.108736
Article CAS PubMed Google Scholar
Nomura DK, Morrison BE, Blankman JL, Long JZ, Kinsey SG, Marcondes MC, et al. Endocannabinoid hydrolysis generates brain prostaglandins that promote neuroinflammation. Science. 2011;334(6057):809. https://doi.org/10.1126/science.1209200
Article CAS PubMed PubMed Central Google Scholar
Legg K. An alternative path to reduce neuroinflammation. Nat Rev Drug Discov. 2011;10(12):901–901. https://doi.org/10.1038/nrd3607
Article CAS PubMed Google Scholar
Deng H, Li W. Monoacylglycerol lipase inhibitors: modulators for lipid metabolism in cancer malignancy, neurological and metabolic disorders. Acta Pharmaceutica Sin B. 2020;10(4):582–602. https://doi.org/10.1016/j.apsb.2019.10.006
Adamson Barnes NS, Mitchell VA, Kazantzis NP, Vaughan CW. Actions of the dual FAAH/MAGL inhibitor JZL195 in a murine neuropathic pain model. Br J Pharmacol. 2016;173(1):77–87. https://doi.org/10.1111/bph.13337
Article CAS PubMed Google Scholar
Lysenko LV, Kim J, Henry C, Tyrtyshnaia A, Kohnz RA, Madamba F, et al. Monoacylglycerol lipase inhibitor JZL184 improves behavior and neural properties in Ts65Dn mice, a model of down syndrome. PLoS ONE. 2014;9(12):e114521. https://doi.org/10.1371/journal.pone.0114521
Article CAS PubMed PubMed Central Google Scholar
Seillier A, Dominguez Aguilar D, Giuffrida A. The dual FAAH/MAGL inhibitor JZL195 has enhanced effects on endocannabinoid transmission and motor behavior in rats as compared to those of the MAGL inhibitor JZL184. Pharmacol Biochem Behav. 2014;124:153–9. https://doi.org/10.1016/j.pbb.2014.05.022
Article CAS PubMed Google Scholar
Schlosburg JE, Blankman JL, Long JZ, Nomura DK, Pan B, Kinsey SG, et al. Chronic monoacylglycerol lipase blockade causes functional antagonism of the endocannabinoid system. Nat Neurosci. 2010;13(9):1113–9. https://doi.org/10.1038/nn.2616
Article CAS PubMed PubMed Central Google Scholar
Long JZ, Li W, Booker L, Burston JJ, Kinsey SG, Schlosburg JE, et al. Selective blockade of 2-arachidonoylglycerol hydrolysis produces cannabinoid behavioral effects. Nat Chem Biol. 2009;5(1):37–44. https://doi.org/10.1038/nchembio.129
Article CAS PubMed Google Scholar
Wise LE, Long KA, Abdullah RA, Long JZ, Cravatt BF, Lichtman AH. Dual fatty acid amide hydrolase and monoacylglycerol lipase blockade produces THC-Like morris water maze deficits in mice. ACS Chem Neurosci. 2012;3(5):369–78. https://doi.org/10.1021/cn200130s
Article CAS PubMed PubMed Central Google Scholar
Greco R, Demartini C, Francavilla M, Zanaboni AM, Tassorelli C. Dual inhibition of FAAH and MAGL counteracts migraine-like pain and behavior in an animal model of migraine. Cells. 2021;10(10):2543. https://doi.org/10.3390/cells10102543
Article CAS PubMed PubMed Central Google Scholar
Marucci G, Buccioni M, Ben DD, Lambertucci C, Volpini R, Amenta F. Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease. Neuropharmacology. 2021;190:108352. https://doi.org/10.1016/j.neuropharm.2020.108352
Article CAS PubMed Google Scholar
Choi SH, Arai AL, Mou Y, Kang B, Yen CC, Hallenbeck J, et al. Neuroprotective effects of MAGL (Monoacylglycerol Lipase) inhibitors in experimental ischemic stroke. Stroke. 2018;49(3):718–26. https://doi.org/10.1161/STROKEAHA.117.019664
Article CAS PubMed PubMed Central Google Scholar
Amin I, Majid S, Farooq A, Wani HA, Noor F, Khan R et al. Chapter 8 - Naringenin (4,5,7-trihydroxyflavanone) as a potent neuroprotective agent: From chemistry to medicine. In: Atta-ur-Rahman, ed. Studies in Natural Products Chemistry. Vol 65. Bioactive Natural Products. Elsevier; 2020:271-300. https://doi.org/10.1016/B978-0-12-817905-5.00008-1
Li J, Sun M, Cui X, Li C. Protective effects of flavonoids against Alzheimer’s disease: pathological hypothesis, potential targets, and structure–activity relationship. Int J Mol Sci. 2022;23(17):10020. https://doi.org/10.3390/ijms231710020
Article CAS PubMed PubMed Central Google Scholar
Fang Y, Xiang W, Cui J, Jiao B, Su X. Anti-inflammatory properties of the citrus flavonoid diosmetin: an updated review of experimental models. Molecules. 2024;29(7):1521. https://doi.org/10.3390/molecules29071521
Article CAS PubMed PubMed Central Google Scholar
Liao Y, Hu X, Pan J, Zhang G. Inhibitory mechanism of baicalein on acetylcholinesterase: inhibitory interaction, conformational change, and computational simulation. Foods. 2022;11(2):168. https://doi.org/10.3390/foods11020168
Article CAS PubMed PubMed Central Google Scholar
Yang A, Yi X, Zhang H, Shen R, Kou X. Diosmetin derivatives as multifunctional anti-AD ligands: design, synthesis, and biological evaluation. Chem Biol Drug Des. 2024;103(4):e14529. https://doi.org/10.1111/cbdd.14529
Article CAS PubMed Google Scholar
Haider S, Liaquat L, Ahmad S, Batool Z, Siddiqui RA, Tabassum S, et al. Naringenin protects AlCl3/D-galactose induced neurotoxicity in rat model of AD via attenuation of acetylcholinesterase levels and inhibition of oxidative stress. PLoS ONE. 2020;15(1):e0227631. https://doi.org/10.1371/journal.pone.0227631
Article CAS PubMed PubMed Central Google Scholar
Bachovchin DA, Cravatt BF. The pharmacological landscape and therapeutic potential of serine hydrolases. Nat Rev Drug Discov. 2012;11(1):52–68. https://doi.org/10.1038/nrd3620
Comments (0)