Carbamoyl flavonoids as dual inhibitors of acetylcholinesterase and monoacylglycerol lipase: synthesis, in vitro evaluation, and computational studies

Hampel H, Mesulam MM, Cuello AC, Farlow MR, Giacobini E, Grossberg GT, et al. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain. 2018;141(7):1917–33. https://doi.org/10.1093/brain/awy132

Article  PubMed  PubMed Central  Google Scholar 

Zhang J, Zhang Y, Wang J, Xia Y, Zhang J, Chen L. Recent advances in Alzheimer’s disease: mechanisms, clinical trials and new drug development strategies. Sig Transduct Target Ther. 2024;9(1):1–35. https://doi.org/10.1038/s41392-024-01911-3

Article  CAS  Google Scholar 

Petrova T, Orellana C, Jelic V, Oeksengaard AR, Snaedal J, Høgh P, et al. Cholinergic dysfunction, neurodegeneration, and amyloid-beta pathology in neurodegenerative diseases. Psychiatry Res Neuroimaging. 2020;302:111099. https://doi.org/10.1016/j.pscychresns.2020.111099

Article  PubMed  Google Scholar 

Nayak V, Patra S, Rout S, Jena AB, Sharma R, Pattanaik KP, et al. Regulation of neuroinflammation in Alzheimer’s disease via nanoparticle-loaded phytocompounds with anti-inflammatory and autophagy-inducing properties. Phytomedicine. 2024;122:155150. https://doi.org/10.1016/j.phymed.2023.155150

Article  CAS  PubMed  Google Scholar 

Haake A, Nguyen K, Friedman L, Chakkamparambil B, Grossberg GT. An update on the utility and safety of cholinesterase inhibitors for the treatment of Alzheimer’s disease. Expert Opin Drug Saf. 2020;19(2):147–57. https://doi.org/10.1080/14740338.2020.1721456

Article  CAS  PubMed  Google Scholar 

Sharma K. Cholinesterase inhibitors as Alzheimer’s therapeutics (Review). Mol Med Rep. 2019;20(2):1479–87. https://doi.org/10.3892/mmr.2019.10374

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sridhar GR Acetylcholinesterase inhibitors (Galantamine, Rivastigmine, and Donepezil). In: Riederer P, Laux G, Nagatsu T, Le W, Riederer C, eds. NeuroPsychopharmacotherapy. Springer International Publishing; 2020:1–13. https://doi.org/10.1007/978-3-319-56015-1_418-1

Xu JY, Chen C. Endocannabinoids in synaptic plasticity and neuroprotection. Neuroscientist. 2015;21(2):152–68. https://doi.org/10.1177/1073858414524632

Article  CAS  PubMed  Google Scholar 

Winters BL, Vaughan CW. Mechanisms of endocannabinoid control of synaptic plasticity. Neuropharmacology. 2021;197:108736. https://doi.org/10.1016/j.neuropharm.2021.108736

Article  CAS  PubMed  Google Scholar 

Nomura DK, Morrison BE, Blankman JL, Long JZ, Kinsey SG, Marcondes MC, et al. Endocannabinoid hydrolysis generates brain prostaglandins that promote neuroinflammation. Science. 2011;334(6057):809. https://doi.org/10.1126/science.1209200

Article  CAS  PubMed  PubMed Central  Google Scholar 

Legg K. An alternative path to reduce neuroinflammation. Nat Rev Drug Discov. 2011;10(12):901–901. https://doi.org/10.1038/nrd3607

Article  CAS  PubMed  Google Scholar 

Deng H, Li W. Monoacylglycerol lipase inhibitors: modulators for lipid metabolism in cancer malignancy, neurological and metabolic disorders. Acta Pharmaceutica Sin B. 2020;10(4):582–602. https://doi.org/10.1016/j.apsb.2019.10.006

Article  CAS  Google Scholar 

Adamson Barnes NS, Mitchell VA, Kazantzis NP, Vaughan CW. Actions of the dual FAAH/MAGL inhibitor JZL195 in a murine neuropathic pain model. Br J Pharmacol. 2016;173(1):77–87. https://doi.org/10.1111/bph.13337

Article  CAS  PubMed  Google Scholar 

Lysenko LV, Kim J, Henry C, Tyrtyshnaia A, Kohnz RA, Madamba F, et al. Monoacylglycerol lipase inhibitor JZL184 improves behavior and neural properties in Ts65Dn mice, a model of down syndrome. PLoS ONE. 2014;9(12):e114521. https://doi.org/10.1371/journal.pone.0114521

Article  CAS  PubMed  PubMed Central  Google Scholar 

Seillier A, Dominguez Aguilar D, Giuffrida A. The dual FAAH/MAGL inhibitor JZL195 has enhanced effects on endocannabinoid transmission and motor behavior in rats as compared to those of the MAGL inhibitor JZL184. Pharmacol Biochem Behav. 2014;124:153–9. https://doi.org/10.1016/j.pbb.2014.05.022

Article  CAS  PubMed  Google Scholar 

Schlosburg JE, Blankman JL, Long JZ, Nomura DK, Pan B, Kinsey SG, et al. Chronic monoacylglycerol lipase blockade causes functional antagonism of the endocannabinoid system. Nat Neurosci. 2010;13(9):1113–9. https://doi.org/10.1038/nn.2616

Article  CAS  PubMed  PubMed Central  Google Scholar 

Long JZ, Li W, Booker L, Burston JJ, Kinsey SG, Schlosburg JE, et al. Selective blockade of 2-arachidonoylglycerol hydrolysis produces cannabinoid behavioral effects. Nat Chem Biol. 2009;5(1):37–44. https://doi.org/10.1038/nchembio.129

Article  CAS  PubMed  Google Scholar 

Wise LE, Long KA, Abdullah RA, Long JZ, Cravatt BF, Lichtman AH. Dual fatty acid amide hydrolase and monoacylglycerol lipase blockade produces THC-Like morris water maze deficits in mice. ACS Chem Neurosci. 2012;3(5):369–78. https://doi.org/10.1021/cn200130s

Article  CAS  PubMed  PubMed Central  Google Scholar 

Greco R, Demartini C, Francavilla M, Zanaboni AM, Tassorelli C. Dual inhibition of FAAH and MAGL counteracts migraine-like pain and behavior in an animal model of migraine. Cells. 2021;10(10):2543. https://doi.org/10.3390/cells10102543

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marucci G, Buccioni M, Ben DD, Lambertucci C, Volpini R, Amenta F. Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease. Neuropharmacology. 2021;190:108352. https://doi.org/10.1016/j.neuropharm.2020.108352

Article  CAS  PubMed  Google Scholar 

Choi SH, Arai AL, Mou Y, Kang B, Yen CC, Hallenbeck J, et al. Neuroprotective effects of MAGL (Monoacylglycerol Lipase) inhibitors in experimental ischemic stroke. Stroke. 2018;49(3):718–26. https://doi.org/10.1161/STROKEAHA.117.019664

Article  CAS  PubMed  PubMed Central  Google Scholar 

Amin I, Majid S, Farooq A, Wani HA, Noor F, Khan R et al. Chapter 8 - Naringenin (4,5,7-trihydroxyflavanone) as a potent neuroprotective agent: From chemistry to medicine. In: Atta-ur-Rahman, ed. Studies in Natural Products Chemistry. Vol 65. Bioactive Natural Products. Elsevier; 2020:271-300. https://doi.org/10.1016/B978-0-12-817905-5.00008-1

Li J, Sun M, Cui X, Li C. Protective effects of flavonoids against Alzheimer’s disease: pathological hypothesis, potential targets, and structure–activity relationship. Int J Mol Sci. 2022;23(17):10020. https://doi.org/10.3390/ijms231710020

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fang Y, Xiang W, Cui J, Jiao B, Su X. Anti-inflammatory properties of the citrus flavonoid diosmetin: an updated review of experimental models. Molecules. 2024;29(7):1521. https://doi.org/10.3390/molecules29071521

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liao Y, Hu X, Pan J, Zhang G. Inhibitory mechanism of baicalein on acetylcholinesterase: inhibitory interaction, conformational change, and computational simulation. Foods. 2022;11(2):168. https://doi.org/10.3390/foods11020168

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang A, Yi X, Zhang H, Shen R, Kou X. Diosmetin derivatives as multifunctional anti-AD ligands: design, synthesis, and biological evaluation. Chem Biol Drug Des. 2024;103(4):e14529. https://doi.org/10.1111/cbdd.14529

Article  CAS  PubMed  Google Scholar 

Haider S, Liaquat L, Ahmad S, Batool Z, Siddiqui RA, Tabassum S, et al. Naringenin protects AlCl3/D-galactose induced neurotoxicity in rat model of AD via attenuation of acetylcholinesterase levels and inhibition of oxidative stress. PLoS ONE. 2020;15(1):e0227631. https://doi.org/10.1371/journal.pone.0227631

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bachovchin DA, Cravatt BF. The pharmacological landscape and therapeutic potential of serine hydrolases. Nat Rev Drug Discov. 2012;11(1):52–68. https://doi.org/10.1038/nrd3620

Article  CAS 

Comments (0)

No login
gif