Synthesis and in vitro study of a novel catechol with a hydantoin core

Breijyeh Z, Karaman R. Design and synthesis of novel antimicrobial agents. Antibiotics. 2023;12:628. https://doi.org/10.3390/antibiotics12030628

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ye N, Chen H, Wold EA, Shi PY, Zhou J. Therapeutic potential of spirooxindoles as antiviral agents. ACS Infect Dis. 2016;2:382–92. https://doi.org/10.1021/acsinfecdis.6b00041

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumar HMS, Herrmann L, Tsogoeva SB. Structural hybridization as a facile approach to new drug candidates. Bioorg Med Chem Lett. 2020;30:127514. https://doi.org/10.1016/j.bmcl.2020.127514

Article  CAS  Google Scholar 

Nepali K, Sharma S, Sharma M, Bedi PMS, Dhar KL. Rational approaches, design strategies, structure activity relationship and mechanistic insights for anticancer hybrids. Eur J Med Chem. 2014;77:422–87. https://doi.org/10.1016/j.ejmech.2014.03.018

Article  CAS  PubMed  Google Scholar 

Tiwari D, Mishra P, Gupta N. Bioactive compounds derived from microalgae showing diverse medicinal activities. Next-Generation Algae. 2023;2:77–94. https://doi.org/10.1002/9781119857860.ch18

Article  Google Scholar 

Ma Y, Frutos-Beltrán E, Kang D, Pannecouque C, De Clercq E, Menéndez-Arias L, et al. Medicinal chemistry strategies for discovering antivirals effective against drug-resistant viruses. Chem Soc Rev. 2021;50:4514–40. https://doi.org/10.1039/D0CS01084G

Article  CAS  PubMed  Google Scholar 

Upadhyay N, Tilekar K, Loiodice F, Anisimova NY, Spirina TS, Sokolova DV, et al. Pharmacophore hybridization approach to discover novel pyrazoline-based hydantoin analogs with anti-tumor efficacy. Bioorganic Chem. 2021;107:104527. https://doi.org/10.1016/j.bioorg.2020.104527

Article  CAS  Google Scholar 

Botros S, Khalil NA, Naguib BH, El-Dash Y. Synthesis and anticonvulsant activity of new phenytoin derivatives. Eur J Med Chem. 2013;60:57–63. https://doi.org/10.1016/j.ejmech.2012.11.025

Article  CAS  PubMed  Google Scholar 

Smolyaninov IV, Pitikova OV, Korchagina EO, Poddel’sky AI, Fukin GK, Luzhnova SA, et al. Catechol thioethers with physiologically active fragments: electrochemistry, antioxidant and cryoprotective activities. Bioorg Chem. 2019;89:103003. https://doi.org/10.1016/j.bioorg.2019.103003

Article  CAS  PubMed  Google Scholar 

Kim H, Kim W, Yum S, Hong S, Oh JE, Lee JW, et al. Caffeic acid phenethyl ester activation of Nrf2 pathway is enhanced under oxidative state: structural analysis and potential as a pathologically targeted therapeutic agent in treatment of colonic inflammation. Free Radic Biol Med. 2013;65:552–62. https://doi.org/10.1016/j.freeradbiomed.2013.07.015

Article  CAS  PubMed  Google Scholar 

Cho JY, Park KY, Kim SJ, Oh S, Moon JH. Antimicrobial activity of the synthesized non-allergenic urushiol derivatives. Biosci Biotechnol Biochem. 2015;79:1915–8. https://doi.org/10.1080/09168451.2015.1061418

Article  CAS  PubMed  Google Scholar 

Knezevic S, Ghafoor A, Mehri S, Barazi A, Dziura M, Trant JF, et al. Catechin and other catechol-containing secondary metabolites: Bacterial biotransformation and regulation of carbohydrate metabolism. Pharma Nutrition. 2021;17:100273. https://doi.org/10.1016/j.phanu.2021.100273

Article  CAS  Google Scholar 

Le NT, Kang EJ, Park JH, Kang K. Catechol‐Amyloid Interactions. Chembiochem. 2023;24:e202300628. https://doi.org/10.1002/cbic.202300628

Article  CAS  PubMed  Google Scholar 

Arsenyev MV, Khamaletdinova NM, Baranov EV, Chesnokov SA, Cherkasov VK. Synthesis, structures, and properties of new sterically hindered hydrazine-based catecholaldimines. Russ Chem Bull. 2016;65:1805–13. https://doi.org/10.1007/s11172-016-1514-9

Article  CAS  Google Scholar 

Durand C, Szostak M. Recent advances in the synthesis of piperazines: focus on C–H functionalization. Organics. 2021;2:337–47. https://doi.org/10.3390/org2040018

Article  CAS  Google Scholar 

Arora P, Arora V, Lamba HS, Wadhwa D. Importance of heterocyclic chemistry: a review. Int J Pharm Sci Res. 2012;3:2947 https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=632510ac666e6172735315d92e17af9a580e99c2

Google Scholar 

Jampilek J. Heterocycles in medicinal chemistry. Molecules. 2019;24:3839. https://doi.org/10.3390/molecules24213839

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumar A, Singh AK, Singh H, Vijayan V, Kumar D, Naik J, et al. Nitrogen containing heterocycles as anticancer agents: a medicinal chemistry perspective. Pharmaceuticals. 2023;16:299. https://doi.org/10.3390/ph16020299

Article  CAS  PubMed  PubMed Central  Google Scholar 

Katiyar P, Verma SK, Umar S, Chauhan P, Verma N. Recent advances in the synthesis and medicinal application of hydantoin: a valuable scaffold in medicinal chemistry. Certif J│Verma et al World J Pharm Res. 2021;243:243–66. https://wjpr.s3.ap-south-1.amazonaws.com/article_issue/fa636e107e6dab952e43f44f1a7c604f.pdf

Google Scholar 

Gupta AK, Thakur GS, Jain SK. Recent development in hydantoins, thiohydantoins, and selenohydantoins as anticancer agents: structure-activity relationship and design strategies. Mini-Rev Med Chem. 2025. https://doi.org/10.2174/0113895575329643241206101210

Article  PubMed  Google Scholar 

Farber NB, Jiang XP, Heinkel C, Nemmers B. Antiepileptic drugs and agents that inhibit voltage-gated sodium channels prevent NMDA antagonist neurotoxicity. Mol Psychiatry. 2002;7:726–33. https://nature.66557.net/articles/4001087

Article  CAS  PubMed  Google Scholar 

Chin EZ, Tan SP, Liew SY, Kurz T. Synthesis and characterization of amino acid-derived hydantoins. Malaysian J Chem. 2021;23:19–25. https://www.researchgate.net/publication/352899474_Synthesis_and_Characterization_of_Amino_Acid-Derived_Hydantoins

Google Scholar 

Murasawa S, Iuchi K, Sato S, Noguchi-Yachide T, Sodeoka M, Yokomatsu T, et al. Small-molecular inhibitors of Ca2+-induced mitochondrial permeability transition (MPT) derived from muscle relaxant dantrolene. Bioorg Med Chem. 2012;20:6384–93. https://doi.org/10.1016/j.bmc.2012.08.062

Article  CAS  PubMed  Google Scholar 

El-Atawy MA, Kebeish R, Almotairy ARZ, Omar AZ. Design, synthesis, characterization, and cytotoxicity of new pyrazolylmethylene-2-thioxoimidazolidin-4-one derivatives towards androgen-sensitive LNCaP prostate cancer cells. Biomolecules. 2024;14:811. https://doi.org/10.3390/biom14070811

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jurin M, Čikoš A, Stepanić V, Górecki M, Pescitelli G, Kontrec D, et al. Synthesis, absolute configuration, biological profile and antiproliferative activity of new 3, 5-disubstituted hydantoins. Pharmaceuticals. 2024;17:1259. https://doi.org/10.3390/ph17101259

Article  CAS  PubMed  PubMed Central  Google Scholar 

Patching SG. Synthesis, NMR analysis and applications of isotope-labelled hydantoins. J Diagnostic Imaging Ther. 2017;4:3–26. https://doi.org/10.17229/jdit.2017-0225-026

Article  Google Scholar 

Edmunds JJ, Klutchko S, Hamby JM, Bunker AM, Connolly CJ, Winters RT, et al. Derivatives of 5-[[1-4 (4-carboxybenzyl) imidazolyl] methylidene] hydantoins as orally active angiotensin II receptor antagonists. J Med Chem. 1995;38:3759–71. https://doi.org/10.1021/jm00019a005

Article  CAS  PubMed  Google Scholar 

Sardo MA, Castaldo M, Cinquegrani M, Bonaiuto M, Fontana L, Campo S, et al. Effects of AT1 receptor antagonist losartan on sICAM-1 and TNF-a levels in uncomplicated hypertensive patients. Angiology. 2004;55:195–203. https://doi.org/10.1177/000331970405500212

Article  PubMed  Google Scholar 

Wu F, Jiang H, Zheng B, Kogiso M, Yao Y, Zhou C, et al. Inhibition of cancer-associated mutant isocitrate dehydrogenases by 2-thiohydantoin compounds. J Med Chem. 2015;58:6899–908. https://doi.org/10.1021/acs.jmedchem.5b00684

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif