Breijyeh Z, Karaman R. Design and synthesis of novel antimicrobial agents. Antibiotics. 2023;12:628. https://doi.org/10.3390/antibiotics12030628
Article CAS PubMed PubMed Central Google Scholar
Ye N, Chen H, Wold EA, Shi PY, Zhou J. Therapeutic potential of spirooxindoles as antiviral agents. ACS Infect Dis. 2016;2:382–92. https://doi.org/10.1021/acsinfecdis.6b00041
Article CAS PubMed PubMed Central Google Scholar
Kumar HMS, Herrmann L, Tsogoeva SB. Structural hybridization as a facile approach to new drug candidates. Bioorg Med Chem Lett. 2020;30:127514. https://doi.org/10.1016/j.bmcl.2020.127514
Nepali K, Sharma S, Sharma M, Bedi PMS, Dhar KL. Rational approaches, design strategies, structure activity relationship and mechanistic insights for anticancer hybrids. Eur J Med Chem. 2014;77:422–87. https://doi.org/10.1016/j.ejmech.2014.03.018
Article CAS PubMed Google Scholar
Tiwari D, Mishra P, Gupta N. Bioactive compounds derived from microalgae showing diverse medicinal activities. Next-Generation Algae. 2023;2:77–94. https://doi.org/10.1002/9781119857860.ch18
Ma Y, Frutos-Beltrán E, Kang D, Pannecouque C, De Clercq E, Menéndez-Arias L, et al. Medicinal chemistry strategies for discovering antivirals effective against drug-resistant viruses. Chem Soc Rev. 2021;50:4514–40. https://doi.org/10.1039/D0CS01084G
Article CAS PubMed Google Scholar
Upadhyay N, Tilekar K, Loiodice F, Anisimova NY, Spirina TS, Sokolova DV, et al. Pharmacophore hybridization approach to discover novel pyrazoline-based hydantoin analogs with anti-tumor efficacy. Bioorganic Chem. 2021;107:104527. https://doi.org/10.1016/j.bioorg.2020.104527
Botros S, Khalil NA, Naguib BH, El-Dash Y. Synthesis and anticonvulsant activity of new phenytoin derivatives. Eur J Med Chem. 2013;60:57–63. https://doi.org/10.1016/j.ejmech.2012.11.025
Article CAS PubMed Google Scholar
Smolyaninov IV, Pitikova OV, Korchagina EO, Poddel’sky AI, Fukin GK, Luzhnova SA, et al. Catechol thioethers with physiologically active fragments: electrochemistry, antioxidant and cryoprotective activities. Bioorg Chem. 2019;89:103003. https://doi.org/10.1016/j.bioorg.2019.103003
Article CAS PubMed Google Scholar
Kim H, Kim W, Yum S, Hong S, Oh JE, Lee JW, et al. Caffeic acid phenethyl ester activation of Nrf2 pathway is enhanced under oxidative state: structural analysis and potential as a pathologically targeted therapeutic agent in treatment of colonic inflammation. Free Radic Biol Med. 2013;65:552–62. https://doi.org/10.1016/j.freeradbiomed.2013.07.015
Article CAS PubMed Google Scholar
Cho JY, Park KY, Kim SJ, Oh S, Moon JH. Antimicrobial activity of the synthesized non-allergenic urushiol derivatives. Biosci Biotechnol Biochem. 2015;79:1915–8. https://doi.org/10.1080/09168451.2015.1061418
Article CAS PubMed Google Scholar
Knezevic S, Ghafoor A, Mehri S, Barazi A, Dziura M, Trant JF, et al. Catechin and other catechol-containing secondary metabolites: Bacterial biotransformation and regulation of carbohydrate metabolism. Pharma Nutrition. 2021;17:100273. https://doi.org/10.1016/j.phanu.2021.100273
Le NT, Kang EJ, Park JH, Kang K. Catechol‐Amyloid Interactions. Chembiochem. 2023;24:e202300628. https://doi.org/10.1002/cbic.202300628
Article CAS PubMed Google Scholar
Arsenyev MV, Khamaletdinova NM, Baranov EV, Chesnokov SA, Cherkasov VK. Synthesis, structures, and properties of new sterically hindered hydrazine-based catecholaldimines. Russ Chem Bull. 2016;65:1805–13. https://doi.org/10.1007/s11172-016-1514-9
Durand C, Szostak M. Recent advances in the synthesis of piperazines: focus on C–H functionalization. Organics. 2021;2:337–47. https://doi.org/10.3390/org2040018
Arora P, Arora V, Lamba HS, Wadhwa D. Importance of heterocyclic chemistry: a review. Int J Pharm Sci Res. 2012;3:2947 https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=632510ac666e6172735315d92e17af9a580e99c2
Jampilek J. Heterocycles in medicinal chemistry. Molecules. 2019;24:3839. https://doi.org/10.3390/molecules24213839
Article CAS PubMed PubMed Central Google Scholar
Kumar A, Singh AK, Singh H, Vijayan V, Kumar D, Naik J, et al. Nitrogen containing heterocycles as anticancer agents: a medicinal chemistry perspective. Pharmaceuticals. 2023;16:299. https://doi.org/10.3390/ph16020299
Article CAS PubMed PubMed Central Google Scholar
Katiyar P, Verma SK, Umar S, Chauhan P, Verma N. Recent advances in the synthesis and medicinal application of hydantoin: a valuable scaffold in medicinal chemistry. Certif J│Verma et al World J Pharm Res. 2021;243:243–66. https://wjpr.s3.ap-south-1.amazonaws.com/article_issue/fa636e107e6dab952e43f44f1a7c604f.pdf
Gupta AK, Thakur GS, Jain SK. Recent development in hydantoins, thiohydantoins, and selenohydantoins as anticancer agents: structure-activity relationship and design strategies. Mini-Rev Med Chem. 2025. https://doi.org/10.2174/0113895575329643241206101210
Farber NB, Jiang XP, Heinkel C, Nemmers B. Antiepileptic drugs and agents that inhibit voltage-gated sodium channels prevent NMDA antagonist neurotoxicity. Mol Psychiatry. 2002;7:726–33. https://nature.66557.net/articles/4001087
Article CAS PubMed Google Scholar
Chin EZ, Tan SP, Liew SY, Kurz T. Synthesis and characterization of amino acid-derived hydantoins. Malaysian J Chem. 2021;23:19–25. https://www.researchgate.net/publication/352899474_Synthesis_and_Characterization_of_Amino_Acid-Derived_Hydantoins
Murasawa S, Iuchi K, Sato S, Noguchi-Yachide T, Sodeoka M, Yokomatsu T, et al. Small-molecular inhibitors of Ca2+-induced mitochondrial permeability transition (MPT) derived from muscle relaxant dantrolene. Bioorg Med Chem. 2012;20:6384–93. https://doi.org/10.1016/j.bmc.2012.08.062
Article CAS PubMed Google Scholar
El-Atawy MA, Kebeish R, Almotairy ARZ, Omar AZ. Design, synthesis, characterization, and cytotoxicity of new pyrazolylmethylene-2-thioxoimidazolidin-4-one derivatives towards androgen-sensitive LNCaP prostate cancer cells. Biomolecules. 2024;14:811. https://doi.org/10.3390/biom14070811
Article CAS PubMed PubMed Central Google Scholar
Jurin M, Čikoš A, Stepanić V, Górecki M, Pescitelli G, Kontrec D, et al. Synthesis, absolute configuration, biological profile and antiproliferative activity of new 3, 5-disubstituted hydantoins. Pharmaceuticals. 2024;17:1259. https://doi.org/10.3390/ph17101259
Article CAS PubMed PubMed Central Google Scholar
Patching SG. Synthesis, NMR analysis and applications of isotope-labelled hydantoins. J Diagnostic Imaging Ther. 2017;4:3–26. https://doi.org/10.17229/jdit.2017-0225-026
Edmunds JJ, Klutchko S, Hamby JM, Bunker AM, Connolly CJ, Winters RT, et al. Derivatives of 5-[[1-4 (4-carboxybenzyl) imidazolyl] methylidene] hydantoins as orally active angiotensin II receptor antagonists. J Med Chem. 1995;38:3759–71. https://doi.org/10.1021/jm00019a005
Article CAS PubMed Google Scholar
Sardo MA, Castaldo M, Cinquegrani M, Bonaiuto M, Fontana L, Campo S, et al. Effects of AT1 receptor antagonist losartan on sICAM-1 and TNF-a levels in uncomplicated hypertensive patients. Angiology. 2004;55:195–203. https://doi.org/10.1177/000331970405500212
Wu F, Jiang H, Zheng B, Kogiso M, Yao Y, Zhou C, et al. Inhibition of cancer-associated mutant isocitrate dehydrogenases by 2-thiohydantoin compounds. J Med Chem. 2015;58:6899–908. https://doi.org/10.1021/acs.jmedchem.5b00684
Comments (0)