Synthesis, characterization and in vitro antitumor activity of asiatic acid derivatives

Wahida A, Buschhorn L, Fröhling S, Jost PJ, Schneeweiss A, Lichter P, et al. The coming decade in precision oncology: six riddles. Nat Rev Cancer. 2023;23:43–54. https://doi.org/10.1038/s41568-022-00529-3

Article  CAS  PubMed  Google Scholar 

Chen P, Liu Y, Wen Y, Zhou C. Non‐small cell lung cancer in China. Cancer Commun. 2022;42:937–70. https://doi.org/10.1002/cac2.12359

Article  Google Scholar 

Lahiri A, Maji A, Potdar PD, Singh N, Parikh P, Bisht B, et al. Lung cancer immunotherapy: progress, pitfalls, and promises. Mol Cancer. 2023;22:1–37. https://doi.org/10.1186/s12943-023-01740-y

Article  Google Scholar 

Ge F, Li Y, Yuan T, Wu Y, He Q, Yang B, et al. Deubiquitinating enzymes: promising targets for drug resistance. Drug Discov Today. 2022;27:2603–13. https://doi.org/10.1016/j.drudis.2022.06.009

Article  CAS  PubMed  Google Scholar 

Kim SJ, Puranik N, Yadav D, Jin JO, Lee PCW. Lipid nanocarrier-based drug delivery systems: therapeutic advances in the treatment of lung cancer. Int J Nanomedicine. 2023;18:2659–76. https://doi.org/10.2147/ijn.S406415

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fan M, Shan M, Lan X, Fang X, Song D, Luo H, et al. Anticancer effect and potential microRNAs targets of ginsenosides against breast cancer. Front Pharmacol. 2022;13:1033017–29. https://doi.org/10.3389/fphar.2022.1033017

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao X, Liu J. Chemical constituents from the fruits of Ligustrum lucidum W.T. aiton and their role on the medicinal treatment. Nat Prod Commun. 2020;15:1–12. https://doi.org/10.1177/1934578x20922338

Article  CAS  Google Scholar 

Asma ST, Acaroz U, Imre K, Morar A, Shah SRA, Hussain SZ, et al. Natural products/bioactive compounds as a source of anticancer drugs. Cancers. 2022;14:6203–26. https://doi.org/10.3390/cancers14246203

Article  CAS  PubMed  PubMed Central  Google Scholar 

Salvador JAR, Leal AS, Valdeira AS, Gonçalves BMF, Alho DPS, Figueiredo SAC, et al. Oleanane-, ursane-, and quinone methide friedelane-type triterpenoid derivatives: recent advances in cancer treatment. Eur J Med Chem. 2017;142:95–130. https://doi.org/10.1016/j.ejmech.2017.07.013

Article  CAS  PubMed  Google Scholar 

Pantia S, Kangsamaksin T, Janvilisri T, Komyod W. Asiatic acid inhibits nasopharyngeal carcinoma cell viability and migration via suppressing STAT3 and Claudin-1. Pharmaceuticals. 2023;16:1–14. https://doi.org/10.3390/ph16060902

Article  CAS  Google Scholar 

Hsu YL, Kuo PL, Lin LT, Lin CC. Asiatic acid, a triterpene, induces apoptosis and cell cycle arrest through activation of extracellular signal-regulated kinase and p38 mitogen-activated protein kinase pathgways in human breast cancer cells. J Pharmacol Exp Ther. 2005;313:333–44. https://doi.org/10.1124/jpet.104.078808

Article  CAS  PubMed  Google Scholar 

Cheng Q, Zhang S, Zhong B, Chen Z, Peng F. Asiatic acid re-sensitizes multidrug-resistant A549/DDP cells to cisplatin by down regulating long non-coding RNA metastasis associated lung adenocarcinoma transcript 1/β-catenin signaling. Bioengineered. 2022;13:12972–84. https://doi.org/10.1080/21655979.2022.2079302

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ren Y, Kinghorn AD. Natural product triterpenoids and their semi-synthetic derivatives with potential anticancer activity. Planta Med. 2019;85:802–14. https://doi.org/10.1055/a-0832-2383

Article  CAS  PubMed  PubMed Central  Google Scholar 

Diniz LR, Calado LL, Duarte AB, de Sousa DP. Centella asiatica and its metabolite asiatic acid: wound healing effects and therapeutic potential. Metabolites. 2023;13:27611–6. https://doi.org/10.3390/metabo13020276

Article  CAS  Google Scholar 

Wang Q, Jin M, Liu Y, Sun L, Lu B, Zhao L, et al. Synthesis, characterization and in vitro antiproliferative effects of pentacyclic triterpenoids. Med Chem Res. 2021;30:2055–68. https://doi.org/10.1007/s00044-021-02795-6

Article  CAS  Google Scholar 

Majeed M, Nagabhushanam K, Bani S, Choudhury AK. Highly oxygenated 11‐keto‐β‐boswellic acid analogues and their antiinflammatory potential. ChemistrySelect. 2018;3:3087–91. https://doi.org/10.1002/slct.201800094

Article  CAS  Google Scholar 

Dong MS, Jung SH, Kim HJ, Kim JR, Zhao LX, Lee ES, et al. Structure-related cytotoxicity and antihepatofibric effect of asiatic acid derivatives in rat hepatic stellate cell-line, HSC-T6. Arch Pharm Res. 2004;27:512–7. https://doi.org/10.1007/BF02980124

Article  CAS  PubMed  Google Scholar 

Zhao CH, Xu J, Zhang YQ, Zhao LX, Feng B. Inhibition of human enterovirus 71 replication by pentacyclic triterpenes and their novel synthetic derivatives. Chem Pharm Bull. 2014;62:764–71. https://doi.org/10.1248/cpb.c14-00088

Article  CAS  Google Scholar 

Huang RZ, Liang GB, Li MS, Fang YL, Zhao SF, Zhou MM, et al. Synthesis and discovery of asiatic acid based 1,2,3-triazole derivatives as antitumor agents blocking NF-κB activation and cell migration. MedChemComm. 2019;10:584–97. https://doi.org/10.1039/C8MD00620B

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jin YT, Qi YQ, Jin M, Sun JF, Diao SB, Zhou W, et al. Synthesis, antitumor and antibacterial activities of cordycepin derivatives. J Asian Nat Prod Res. 2021;24:849–59. https://doi.org/10.1080/10286020.2021.1982907

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif