Comparative study: trimetazidine versus olanzapine on cognitive dysfunction and behavioral changes in ketamine-induced psychosis model in mice

Larson MK, Walker EF, Compton MT. Early signs, diagnosis and therapeutics of the prodromal phase of schizophrenia and related psychotic disorders. Expert Rev Neurother. 2010. https://doi.org/10.1586/ern.10.93.

Article  PubMed  PubMed Central  Google Scholar 

Kumar P, Efstathopoulos P, Millischer V, Olsson E, Bin Wei Y, Brüstle O, et al. Mitochondrial DNA copy number is associated with psychosis severity and anti-psychotic treatment. Sci Rep. 2018. https://doi.org/10.1038/s41598-018-31122-0.

Article  PubMed  PubMed Central  Google Scholar 

Bruijnzeel D, Suryadevara U, Tandon R. Antipsychotic treatment of schizophrenia: an update. Asian J Psychiatr. 2014. https://doi.org/10.1016/j.ajp.2014.08.002.

Article  PubMed  Google Scholar 

Mueser KT, Deavers F, Penn DL, Cassisi JE. Psychosocial Treatments for Schizophrenia. Annu Rev Clin Psychol. 2013;9:465–97. https://doi.org/10.1146/annurev-clinpsy-050212-185620.

Article  PubMed  Google Scholar 

Kopelowicz A, Zarate R, Tripodis K, Gonzalez V, Mintz J. Differential efficacy of olanzapine for deficit and nondeficit negative symptoms in schizophrenia. Am J Psychiatry. 2000. https://doi.org/10.1176/appi.ajp.157.6.987.

Article  PubMed  Google Scholar 

Cuesta MJ, Peralta V, Zarzuela A. Effects of olanzapine and other antipsychotics on cognitive function in chronic schizophrenia: a longitudinal study. Schizophr Res. 2001. https://doi.org/10.1016/S0920-9964(00)00112-2.

Article  PubMed  Google Scholar 

McGurk SR, Lee MA, Jayathilake K, Meltzer HY. Cognitive effects of olanzapine treatment in schizophrenia. MedGenMed. 2004;6:27.

PubMed  PubMed Central  Google Scholar 

Sabe M, Kaiser S, Sentissi O. Physical exercise for negative symptoms of schizophrenia: systematic review of randomized controlled trials and meta-analysis. Gen Hosp Psychiatry. 2020. https://doi.org/10.1016/j.genhosppsych.2019.11.002.

Article  PubMed  Google Scholar 

Guo J, Liu K, Liao Y, Qin Y, Yue W. Efficacy and feasibility of aerobic exercise interventions as an adjunctive treatment for patients with schizophrenia: a meta-analysis. Schizophrenia. 2024. https://doi.org/10.1038/s41537-023-00426-0.

Article  PubMed  PubMed Central  Google Scholar 

Gupta R, Khan R, Cortes CJ. Forgot to exercise? Exercise derived circulating myokines in Alzheimer’s disease: a perspective. Front Neurol. 2021. https://doi.org/10.3389/fneur.2021.649452.

Article  PubMed  PubMed Central  Google Scholar 

Chow LS, Gerszten RE, Taylor JM, Pedersen BK, van Praag H, Trappe S, et al. Exerkines in health, resilience and disease. Nat Rev Endocrinol. 2022. https://doi.org/10.1038/s41574-022-00641-2.

Article  PubMed  PubMed Central  Google Scholar 

Kong S, Cai B, Nie Q. PGC-1α affects skeletal muscle and adipose tissue development by regulating mitochondrial biogenesis. Mol Genet Genomics. 2022. https://doi.org/10.1007/s00438-022-01878-2.

Article  PubMed  Google Scholar 

Lima-Filho R, Fortuna JS, Cozachenco D, Isaac AR, Silva NLE, Saldanha A, et al. Brain FNDC5/Irisin expression in patients and mouse models of major depression. ENeuro. 2023. https://doi.org/10.1523/ENEURO.0256-22.2023.

Article  PubMed  PubMed Central  Google Scholar 

Lavi G, Horwitz A, Einstein O, Zipori R, Gross O, Birk R. Fndc5/irisin is regulated by myogenesis stage, irisin, muscle type and training. Am J Transl Res. 2022;14:7063.

CAS  PubMed  PubMed Central  Google Scholar 

Jandova T, Buendía-Romero A, Polanska H, Hola V, Rihova M, Vetrovsky T, et al. Long-term effect of exercise on Irisin blood levels—systematic review and meta-analysis. Healthcare. 2021. https://doi.org/10.3390/healthcare9111438.

Article  PubMed  PubMed Central  Google Scholar 

So WY, Leung PS. Irisin ameliorates hepatic glucose/lipid metabolism and enhances cell survival in insulin-resistant human HepG2 cells through adenosine monophosphate-activated protein kinase signaling. Int J Biochem Cell Biol. 2016. https://doi.org/10.1016/j.biocel.2016.07.022.

Article  PubMed  Google Scholar 

Jodeiri Farshbaf M, Alviña K. Multiple roles in neuroprotection for the exercise derived myokine irisin. Front Aging Neurosci. 2021. https://doi.org/10.3389/fnagi.2021.649929.

Article  PubMed  PubMed Central  Google Scholar 

Rody T, De Amorim JA, De Felice FG. The emerging neuroprotective roles of exerkines in Alzheimer’s disease. Front Aging Neurosci. 2022. https://doi.org/10.3389/fnagi.2022.965190.

Article  PubMed  PubMed Central  Google Scholar 

Valenzuela PL, Castillo-García A, Morales JS, de la Villa P, Hampel H, Emanuele E, et al. Exercise benefits on Alzheimer’s disease: state-of-the-science. Ageing Res Rev. 2020. https://doi.org/10.1016/j.arr.2020.101108.

Article  PubMed  Google Scholar 

de Freitas GB, Lourenco MV, De Felice FG. Protective actions of exercise-related FNDC5/Irisin in memory and Alzheimer’s disease. J Neurochem. 2020. https://doi.org/10.1111/jnc.15039.

Article  PubMed  Google Scholar 

Lourenco MV, Frozza RL, de Freitas GB, Zhang H, Kincheski GC, Ribeiro FC, et al. Exercise-linked FNDC5/irisin rescues synaptic plasticity and memory defects in Alzheimer’s models. Nat Med. 2019. https://doi.org/10.1038/s41591-018-0275-4.

Article  PubMed  PubMed Central  Google Scholar 

Chen K, Wang K, Wang T. Protective effect of irisin against Alzheimer’s disease. Front Psychiatry. 2022. https://doi.org/10.3389/fpsyt.2022.967683.

Article  PubMed  PubMed Central  Google Scholar 

De Simone G, Mazza B, Vellucci L, Barone A, Ciccarelli M, de Bartolomeis A. Schizophrenia synaptic pathology and antipsychotic treatment in the framework of oxidative and mitochondrial dysfunction: translational highlights for the clinics and treatment. Antioxidants. 2023. https://doi.org/10.3390/antiox12040975.

Article  PubMed  PubMed Central  Google Scholar 

Morén C, Luz Juárez-Flores D, Cardellach F, Garrabou G. The role of therapeutic drugs on acquired mitochondrial toxicity. Curr Drug Metab. 2016. https://doi.org/10.2174/1389200217666160322143631.

Article  PubMed  Google Scholar 

Hroudova J, Fisar Z. Activities of respiratory chain complexes and citrate synthase influenced by pharmacologically different antidepressants and mood stabilizers. Neuroendocrinol Lett. 2010;31:336–42.

CAS  PubMed  Google Scholar 

Boz Z, Hu M, Yu Y, Huang XF. N-acetylcysteine prevents olanzapine-induced oxidative stress in mHypoA-59 hypothalamic neurons. Sci Rep. 2020. https://doi.org/10.1038/s41598-020-75356-3.

Article  PubMed  PubMed Central  Google Scholar 

Vancampfort D, Probst M, Daenen A, Van DT, De Hert M, Rosenbaum S, et al. Impact of anti-psychotic medication on physical activity and physical fitness in adolescents: an exploratory study. Psychiatry Res. 2016. https://doi.org/10.1016/j.psychres.2016.05.042.

Article  PubMed  Google Scholar 

Lionetti V, Stanley WC, Recchia FA. Modulating fatty acid oxidation in heart failure. Cardiovasc Res. 2011. https://doi.org/10.1093/cvr/cvr038.

Article  PubMed  PubMed Central  Google Scholar 

Vijayakumar A, Wu YJ, Buffin NJ, Li X, Sun H, Gordon RE, et al. Skeletal muscle growth hormone receptor signaling regulates basal, but not fasting-induced. Lipid Oxidation PLoS One. 2012. https://doi.org/10.1371/journal.pone.0044777.

Article  PubMed  Google Scholar 

Molinari F, Pin F, Gorini S, Chiandotto S, Pontecorvo L, Penna F, et al. The mitochondrial metabolic reprogramming agent trimetazidine as an ‘exercise mimetic’ in cachectic C26-bearing mice. J Cachexia Sarcopenia Muscle. 2017. https://doi.org/10.1002/jcsm.12226.

Article  PubMed  PubMed Central 

Comments (0)

No login
gif