Larson MK, Walker EF, Compton MT. Early signs, diagnosis and therapeutics of the prodromal phase of schizophrenia and related psychotic disorders. Expert Rev Neurother. 2010. https://doi.org/10.1586/ern.10.93.
Article PubMed PubMed Central Google Scholar
Kumar P, Efstathopoulos P, Millischer V, Olsson E, Bin Wei Y, Brüstle O, et al. Mitochondrial DNA copy number is associated with psychosis severity and anti-psychotic treatment. Sci Rep. 2018. https://doi.org/10.1038/s41598-018-31122-0.
Article PubMed PubMed Central Google Scholar
Bruijnzeel D, Suryadevara U, Tandon R. Antipsychotic treatment of schizophrenia: an update. Asian J Psychiatr. 2014. https://doi.org/10.1016/j.ajp.2014.08.002.
Mueser KT, Deavers F, Penn DL, Cassisi JE. Psychosocial Treatments for Schizophrenia. Annu Rev Clin Psychol. 2013;9:465–97. https://doi.org/10.1146/annurev-clinpsy-050212-185620.
Kopelowicz A, Zarate R, Tripodis K, Gonzalez V, Mintz J. Differential efficacy of olanzapine for deficit and nondeficit negative symptoms in schizophrenia. Am J Psychiatry. 2000. https://doi.org/10.1176/appi.ajp.157.6.987.
Cuesta MJ, Peralta V, Zarzuela A. Effects of olanzapine and other antipsychotics on cognitive function in chronic schizophrenia: a longitudinal study. Schizophr Res. 2001. https://doi.org/10.1016/S0920-9964(00)00112-2.
McGurk SR, Lee MA, Jayathilake K, Meltzer HY. Cognitive effects of olanzapine treatment in schizophrenia. MedGenMed. 2004;6:27.
PubMed PubMed Central Google Scholar
Sabe M, Kaiser S, Sentissi O. Physical exercise for negative symptoms of schizophrenia: systematic review of randomized controlled trials and meta-analysis. Gen Hosp Psychiatry. 2020. https://doi.org/10.1016/j.genhosppsych.2019.11.002.
Guo J, Liu K, Liao Y, Qin Y, Yue W. Efficacy and feasibility of aerobic exercise interventions as an adjunctive treatment for patients with schizophrenia: a meta-analysis. Schizophrenia. 2024. https://doi.org/10.1038/s41537-023-00426-0.
Article PubMed PubMed Central Google Scholar
Gupta R, Khan R, Cortes CJ. Forgot to exercise? Exercise derived circulating myokines in Alzheimer’s disease: a perspective. Front Neurol. 2021. https://doi.org/10.3389/fneur.2021.649452.
Article PubMed PubMed Central Google Scholar
Chow LS, Gerszten RE, Taylor JM, Pedersen BK, van Praag H, Trappe S, et al. Exerkines in health, resilience and disease. Nat Rev Endocrinol. 2022. https://doi.org/10.1038/s41574-022-00641-2.
Article PubMed PubMed Central Google Scholar
Kong S, Cai B, Nie Q. PGC-1α affects skeletal muscle and adipose tissue development by regulating mitochondrial biogenesis. Mol Genet Genomics. 2022. https://doi.org/10.1007/s00438-022-01878-2.
Lima-Filho R, Fortuna JS, Cozachenco D, Isaac AR, Silva NLE, Saldanha A, et al. Brain FNDC5/Irisin expression in patients and mouse models of major depression. ENeuro. 2023. https://doi.org/10.1523/ENEURO.0256-22.2023.
Article PubMed PubMed Central Google Scholar
Lavi G, Horwitz A, Einstein O, Zipori R, Gross O, Birk R. Fndc5/irisin is regulated by myogenesis stage, irisin, muscle type and training. Am J Transl Res. 2022;14:7063.
CAS PubMed PubMed Central Google Scholar
Jandova T, Buendía-Romero A, Polanska H, Hola V, Rihova M, Vetrovsky T, et al. Long-term effect of exercise on Irisin blood levels—systematic review and meta-analysis. Healthcare. 2021. https://doi.org/10.3390/healthcare9111438.
Article PubMed PubMed Central Google Scholar
So WY, Leung PS. Irisin ameliorates hepatic glucose/lipid metabolism and enhances cell survival in insulin-resistant human HepG2 cells through adenosine monophosphate-activated protein kinase signaling. Int J Biochem Cell Biol. 2016. https://doi.org/10.1016/j.biocel.2016.07.022.
Jodeiri Farshbaf M, Alviña K. Multiple roles in neuroprotection for the exercise derived myokine irisin. Front Aging Neurosci. 2021. https://doi.org/10.3389/fnagi.2021.649929.
Article PubMed PubMed Central Google Scholar
Rody T, De Amorim JA, De Felice FG. The emerging neuroprotective roles of exerkines in Alzheimer’s disease. Front Aging Neurosci. 2022. https://doi.org/10.3389/fnagi.2022.965190.
Article PubMed PubMed Central Google Scholar
Valenzuela PL, Castillo-García A, Morales JS, de la Villa P, Hampel H, Emanuele E, et al. Exercise benefits on Alzheimer’s disease: state-of-the-science. Ageing Res Rev. 2020. https://doi.org/10.1016/j.arr.2020.101108.
de Freitas GB, Lourenco MV, De Felice FG. Protective actions of exercise-related FNDC5/Irisin in memory and Alzheimer’s disease. J Neurochem. 2020. https://doi.org/10.1111/jnc.15039.
Lourenco MV, Frozza RL, de Freitas GB, Zhang H, Kincheski GC, Ribeiro FC, et al. Exercise-linked FNDC5/irisin rescues synaptic plasticity and memory defects in Alzheimer’s models. Nat Med. 2019. https://doi.org/10.1038/s41591-018-0275-4.
Article PubMed PubMed Central Google Scholar
Chen K, Wang K, Wang T. Protective effect of irisin against Alzheimer’s disease. Front Psychiatry. 2022. https://doi.org/10.3389/fpsyt.2022.967683.
Article PubMed PubMed Central Google Scholar
De Simone G, Mazza B, Vellucci L, Barone A, Ciccarelli M, de Bartolomeis A. Schizophrenia synaptic pathology and antipsychotic treatment in the framework of oxidative and mitochondrial dysfunction: translational highlights for the clinics and treatment. Antioxidants. 2023. https://doi.org/10.3390/antiox12040975.
Article PubMed PubMed Central Google Scholar
Morén C, Luz Juárez-Flores D, Cardellach F, Garrabou G. The role of therapeutic drugs on acquired mitochondrial toxicity. Curr Drug Metab. 2016. https://doi.org/10.2174/1389200217666160322143631.
Hroudova J, Fisar Z. Activities of respiratory chain complexes and citrate synthase influenced by pharmacologically different antidepressants and mood stabilizers. Neuroendocrinol Lett. 2010;31:336–42.
Boz Z, Hu M, Yu Y, Huang XF. N-acetylcysteine prevents olanzapine-induced oxidative stress in mHypoA-59 hypothalamic neurons. Sci Rep. 2020. https://doi.org/10.1038/s41598-020-75356-3.
Article PubMed PubMed Central Google Scholar
Vancampfort D, Probst M, Daenen A, Van DT, De Hert M, Rosenbaum S, et al. Impact of anti-psychotic medication on physical activity and physical fitness in adolescents: an exploratory study. Psychiatry Res. 2016. https://doi.org/10.1016/j.psychres.2016.05.042.
Lionetti V, Stanley WC, Recchia FA. Modulating fatty acid oxidation in heart failure. Cardiovasc Res. 2011. https://doi.org/10.1093/cvr/cvr038.
Article PubMed PubMed Central Google Scholar
Vijayakumar A, Wu YJ, Buffin NJ, Li X, Sun H, Gordon RE, et al. Skeletal muscle growth hormone receptor signaling regulates basal, but not fasting-induced. Lipid Oxidation PLoS One. 2012. https://doi.org/10.1371/journal.pone.0044777.
Molinari F, Pin F, Gorini S, Chiandotto S, Pontecorvo L, Penna F, et al. The mitochondrial metabolic reprogramming agent trimetazidine as an ‘exercise mimetic’ in cachectic C26-bearing mice. J Cachexia Sarcopenia Muscle. 2017. https://doi.org/10.1002/jcsm.12226.
Comments (0)