Voclosporin promotes neurological function recovery by inhibiting inflammation and maintaining blood–brain barrier integrity following rtPA reperfusion after MCAO in mice

Abdel-Kahaar E, Keller F (2023) Clinical pharmacokinetics and pharmacodynamics of voclosporin. Clin Pharmacokinet 62(5):693–703. https://doi.org/10.1007/s40262-023-01246-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arumugam TV, Granger DN, Mattson MP (2005) Stroke and T-cells. Neuromol Med 7(3):229–242. https://doi.org/10.1385/NMM:7:3:229

Article  CAS  Google Scholar 

Chaturvedi M, Kaczmarek L (2014) Mmp-9 inhibition: a therapeutic strategy in ischemic stroke. Mol Neurobiol 49(1):563–573. https://doi.org/10.1007/s12035-013-8538-z

Article  CAS  PubMed  Google Scholar 

Chen AQ, Fang Z, Chen XL, Yang S, Zhou YF, Mao L, Hu B (2019) Microglia-derived TNF-alpha mediates endothelial necroptosis aggravating blood brain-barrier disruption after ischemic stroke. Cell Death Dis 10(7):487. https://doi.org/10.1038/s41419-019-1716-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Davis S, Donnan G (2009) The ECASS III results and the tPA paradox. Int J Stroke 4(1):17–18. https://doi.org/10.1111/j.1747-4949.2009.00248.x

Article  PubMed  Google Scholar 

He Q, Ma Y, Fang C, Deng Z, Wang F, Qu Y, Guo ZN (2023) Remote ischemic conditioning attenuates blood-brain barrier disruption after recombinant tissue plasminogen activator treatment via reducing PDGF-CC. Pharmacol Res 187:106641. https://doi.org/10.1016/j.phrs.2022.106641

Article  CAS  PubMed  Google Scholar 

Heo YA (2021) Voclosporin: first approval. Drugs 81(5):605–610. https://doi.org/10.1007/s40265-021-01488-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hernandez IH, Villa-Gonzalez M, Martin G, Soto M, Perez-Alvarez MJ (2021) Glial cells as therapeutic approaches in brain ischemia–reperfusion injury. Cells. https://doi.org/10.3390/cells10071639

Article  PubMed  PubMed Central  Google Scholar 

Horiuchi T, Mitoma H, Harashima S, Tsukamoto H, Shimoda T (2010) Transmembrane TNF-alpha: structure, function and interaction with anti-TNF agents. Rheumatology (Oxford) 49(7):1215–1228. https://doi.org/10.1093/rheumatology/keq031

Article  CAS  PubMed  Google Scholar 

Kang R, Gamdzyk M, Lenahan C, Tang J, Tan S, Zhang JH (2020) The dual role of microglia in blood–brain barrier dysfunction after stroke. Curr Neuropharmacol 18(12):1237–1249. https://doi.org/10.2174/1570159X18666200529150907

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kawa H, Ahmed Z, Majid A, Chen R (2025) Inhibition of matrix metalloproteinases to reduce blood brain barrier disruption and haemorrhagic transformation in ischaemic stroke: go broad or go narrow? Neuropharmacology 262:110192. https://doi.org/10.1016/j.neuropharm.2024.110192

Article  CAS  PubMed  Google Scholar 

Khaja AM, Grotta JC (2007) Established treatments for acute ischaemic stroke. Lancet 369(9558):319–330. https://doi.org/10.1016/S0140-6736(07)60154-8

Article  CAS  PubMed  Google Scholar 

Khassafi N, Azami Tameh A, Mirzaei H, Rafat A, Barati S, Khassafi N, Vahidinia Z (2024) Crosstalk between Nrf2 signaling pathway and inflammation in ischemic stroke: mechanisms of action and therapeutic implications. Exp Neurol 373:114655. https://doi.org/10.1016/j.expneurol.2023.114655

Article  CAS  PubMed  Google Scholar 

Lebrun F, Levard D, Lemarchand E, Yetim M, Furon J, Potzeha F, Vivien D (2024) Improving stroke outcomes in hyperglycemic mice by modulating tPA/NMDAR signaling to reduce inflammation and hemorrhages. Blood Adv 8(5):1330–1344. https://doi.org/10.1182/bloodadvances.2023011744

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lenglet S, Montecucco F, Denes A, Coutts G, Pinteaux E, Mach F, Copin JC (2014) Recombinant tissue plasminogen activator enhances microglial cell recruitment after stroke in mice. J Cereb Blood Flow Metab 34(5):802–812. https://doi.org/10.1038/jcbfm.2014.9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li PA, Kristian T, He QP, Siesjo BK (2000) Cyclosporin A enhances survival, ameliorates brain damage, and prevents secondary mitochondrial dysfunction after a 30-minute period of transient cerebral ischemia. Exp Neurol 165(1):153–163. https://doi.org/10.1006/exnr.2000.7459

Article  CAS  PubMed  Google Scholar 

Li Y, Zhong W, Jiang Z, Tang X (2019) New progress in the approaches for blood-brain barrier protection in acute ischemic stroke. Brain Res Bull 144:46–57. https://doi.org/10.1016/j.brainresbull.2018.11.006

Article  CAS  PubMed  Google Scholar 

Li Y, Liu B, Zhao T, Quan X, Han Y, Cheng Y, Zhao Y (2023) Comparative study of extracellular vesicles derived from mesenchymal stem cells and brain endothelial cells attenuating blood-brain barrier permeability via regulating Caveolin-1-dependent ZO-1 and Claudin-5 endocytosis in acute ischemic stroke. J Nanobiotechnol 21(1):70. https://doi.org/10.1186/s12951-023-01828-z

Article  CAS  Google Scholar 

Li J, Wang Z, Li J, Zhao H, Ma Q (2024) HMGB1: a new target for ischemic stroke and hemorrhagic transformation. Transl Stroke Res. https://doi.org/10.1007/s12975-024-01258-5

Article  PubMed  PubMed Central  Google Scholar 

Liu C, Xie J, Sun S, Li H, Li T, Jiang C, Wang W (2022a) Hemorrhagic transformation after tissue plasminogen activator treatment in acute ischemic stroke. Cell Mol Neurobiol 42(3):621–646. https://doi.org/10.1007/s10571-020-00985-1

Article  CAS  PubMed  Google Scholar 

Liu D, Ji Q, Cheng Y, Liu M, Zhang B, Mei Q, Zhou S (2022b) Cyclosporine A loaded brain targeting nanoparticle to treat cerebral ischemia/reperfusion injury in mice. J Nanobiotechnol 20(1):256. https://doi.org/10.1186/s12951-022-01474-x

Article  CAS  Google Scholar 

Long J, Sun Y, Liu S, Yang S, Chen C, Zhang Z, Chen N (2023) Targeting pyroptosis as a preventive and therapeutic approach for stroke. Cell Death Discov 9(1):155. https://doi.org/10.1038/s41420-023-01440-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lulic D, Burns J, Bae EC, van Loveren H, Borlongan CV (2011) A review of laboratory and clinical data supporting the safety and efficacy of cyclosporin A in traumatic brain injury. Neurosurgery 68(5):1172–1185. https://doi.org/10.1227/NEU.0b013e31820c6cdc. (discussion 1185-1176)

Article  PubMed  Google Scholar 

Mendelson SJ, Prabhakaran S (2021) Diagnosis and management of transient ischemic attack and acute ischemic stroke: a review. JAMA 325(11):1088–1098. https://doi.org/10.1001/jama.2020.26867

Article  CAS  PubMed  Google Scholar 

Montellano FA, Ungethum K, Ramiro L, Nacu A, Hellwig S, Fluri F, Heuschmann PU (2021) Role of blood-based biomarkers in ischemic stroke prognosis: a systematic review. Stroke 52(2):543–551. https://doi.org/10.1161/STROKEAHA.120.029232

Article  CAS  PubMed  Google Scholar 

Park YJ, Yoo SA, Kim M, Kim WU (2020) The role of calcium-calcineurin-NFAT signaling pathway in health and autoimmune diseases. Front Immunol 11:195. https://doi.org/10.3389/fimmu.2020.00195

Article  CAS  PubMed  PubMed Central  Google Scholar 

Planas AM (2024) Role of microglia in stroke. Glia 72(6):1016–1053. https://doi.org/10.1002/glia.24501

Article  CAS  PubMed  Google Scholar 

Rovin BH, Teng YKO, Ginzler EM, Arriens C, Caster DJ, Romero-Diaz J, Huizinga RB (2021) Efficacy and safety of voclosporin versus placebo for lupus nephritis (AURORA 1): a double-blind, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet 397(10289):2070–2080.

Comments (0)

No login
gif