Myeloma mesenchymal stem cells’ bioenergetics afford a novel selective therapeutic target

Wu J, Zhang W, Ran Q, Xiang Y, Zhong JF, Li SC, et al. The differentiation balance of bone marrow mesenchymal stem cells is crucial to hematopoiesis. Stem Cells Int. 2018;2018:1540148.

Article  PubMed  PubMed Central  Google Scholar 

García-Sánchez D, González-González A, Alfonso-Fernández A, Del Dujo-Gutiérrez M, Pérez-Campo FM. Communication between bone marrow mesenchymal stem cells and multiple myeloma cells: impact on disease progression. World J Stem Cells. 2023;15:421–37.

Article  PubMed  PubMed Central  Google Scholar 

Maiso P, Mogollón P, Ocio EM, Garayoa M. Bone marrow mesenchymal stromal cells in multiple myeloma: their role as active contributors to myeloma progression. Cancers (Basel). 2021;13.

Attar-Schneider O, Zismanov V, Dabbah M, Tartakover-Matalon S, Drucker L, Lishner M. Multiple myeloma and bone marrow mesenchymal stem cells’ crosstalk: effect on translation initiation. Mol Carcinog. 2016;55:1343–54.

Article  CAS  PubMed  Google Scholar 

Tirado HA, Balasundaram N, Laaouimir L, Erdem A, van Gastel N. Metabolic crosstalk between stromal and malignant cells in the bone marrow niche. Bone Rep. 2023;18:101669.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gavriatopoulou M, Paschou SA, Ntanasis-Stathopoulos I, Dimopoulos MA. Metabolic disorders in multiple myeloma. Int J Mol Sci 2021;22.

Cheng Y, Sun F, Thornton K, Jing X, Dong J, Yun G, et al. FOXM1 regulates glycolysis and energy production in multiple myeloma. Oncogene. 2022;41:3899–911.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lim JSL, Chong PSY, Chng WJ. Metabolic vulnerabilities in multiple myeloma. Cancers (Basel). 2022;14.

de Jong MME, Kellermayer Z, Papazian N, Tahri S, Hofste Op Bruinink D, Hoogenboezem R, et al. The multiple myeloma microenvironment is defined by an inflammatory stromal cell landscape. Nat Immunol. 2021;22:769–80.

Article  PubMed  Google Scholar 

Plakhova N, Panagopoulos V, Vandyke K, Zannettino ACW, Mrozik KM. Mesenchymal stromal cell senescence in haematological malignancies. Cancer Metastasis Rev. 2023;42:277–96.

Article  PubMed  Google Scholar 

Liu Z, Liu H, He J, Lin P, Tong Q, Yang J. Myeloma cells shift osteoblastogenesis to adipogenesis by inhibiting the ubiquitin ligase MURF1 in mesenchymal stem cells. Sci Signal 2020;13.

Xu S, De Veirman K, De Becker A, Vanderkerken K, Van Riet I. Mesenchymal stem cells in multiple myeloma: a therapeutical tool or target?. Leukemia. 2018;32:1500–14.

Article  PubMed  PubMed Central  Google Scholar 

Nair R, Gupta P, Shanmugam M. Mitochondrial metabolic determinants of multiple myeloma growth, survival, and therapy efficacy. Frontiers Oncol. 2022;12:1000106.

Article  CAS  Google Scholar 

Altieri DC. Mitochondria in cancer: clean windmills or stressed tinkerers?. Trends Cell Biol. 2023;33:293–9.

Article  CAS  PubMed  Google Scholar 

Adebayo M, Singh S, Singh AP, Dasgupta S. Mitochondrial fusion and fission: the fine-tune balance for cellular homeostasis. Faseb j. 2021;35:e21620.

Article  CAS  PubMed  Google Scholar 

Tibullo D, Giallongo C, Romano A, Vicario N, Barbato A, Puglisi F, et al. Mitochondrial functions, energy metabolism and protein glycosylation are interconnected processes mediating resistance to Bortezomib in multiple myeloma cells. Biomolecules. 2020;10.

Liang L, Li W, Li X, Jin X, Liao Q, Li Y, et al. ‘Reverse Warburg effect’ of cancer‑associated fibroblasts (Review). Int J Oncol. 2022;60.

Marlein CR, Piddock RE, Mistry JJ, Zaitseva L, Hellmich C, Horton RH, et al. CD38-driven mitochondrial trafficking promotes bioenergetic plasticity in multiple myeloma. Cancer Res. 2019;79:2285–97.

Article  CAS  PubMed  Google Scholar 

Giallongo C, Dulcamare I, Tibullo D, Del Fabro V, Vicario N, Parrinello N, et al. CXCL12/CXCR4 axis supports mitochondrial trafficking in tumor myeloma microenvironment. Oncogenesis. 2022;11:6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang G, Li H, Zhang H. Abnormal expression of mitochondrial ribosomal proteins and their encoding genes with cell apoptosis and diseases. Int J Mol Sci. 2020;21.

Liu Y, Wang P, Hu W, Chen D. New insights into the roles of peroxiredoxins in cancer. Biomed Pharmacother. 2023;164:114896.

Article  CAS  PubMed  Google Scholar 

Richman TR, Ermer JA, Siira SJ, Kuznetsova I, Brosnan CA, Rossetti G, et al. Mitochondrial mistranslation modulated by metabolic stress causes cardiovascular disease and reduced lifespan. Aging Cell. 2021;20:e13408.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marchetti P, Fovez Q, Germain N, Khamari R, Kluza J. Mitochondrial spare respiratory capacity: Mechanisms, regulation, and significance in non-transformed and cancer cells. Faseb j. 2020;34:13106–24.

Article  CAS  PubMed  Google Scholar 

van der Windt GJ, Everts B, Chang CH, Curtis JD, Freitas TC, Amiel E, et al. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity. 2012;36:68–78.

Article  PubMed  Google Scholar 

Suárez-Rivero JM, Pastor-Maldonado CJ, Povea-Cabello S, Álvarez-Córdoba M, Villalón-García I, Talaverón-Rey M, et al. UPR(mt) activation improves pathological alterations in cellular models of mitochondrial diseases. Orphanet J Rare Dis. 2022;17:204.

Article  PubMed  PubMed Central  Google Scholar 

Zhang R, Zhang K. Mitochondrial NAD kinase in health and disease. Redox Biol. 2023;60:102613.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dai W, Wang G, Chwa J, Oh ME, Abeywardana T, Yang Y, et al. Mitochondrial division inhibitor (mdivi-1) decreases oxidative metabolism in cancer. Br J Cancer. 2020;122:1288–97.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sessions DT, Kim KB, Kashatus JA, Churchill N, Park KS, Mayo MW, et al. Opa1 and Drp1 reciprocally regulate cristae morphology, ETC function, and NAD(+) regeneration in KRas-mutant lung adenocarcinoma. Cell Rep. 2022;41:111818.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ježek J, Cooper KF, Strich R. Reactive oxygen species and mitochondrial dynamics: the Yin and Yang of mitochondrial dysfunction and cancer progression. Antioxidants (Basel). 2018;7.

Lasica M. Anderson MA. Review of Venetoclax in CLL, AML and multiple myeloma. J Pers Med. 2021;11.

Kitadate A, Terao T, Narita K, Ikeda S, Takahashi Y, Tsushima T, et al. Multiple myeloma with t(11;14)-associated immature phenotype has lower CD38 expression and higher BCL2 dependence. Cancer Sci. 2021;112:3645–54.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gupta VA, Barwick BG, Matulis SM, Shirasaki R, Jaye DL, Keats JJ, et al. Venetoclax sensitivity in multiple myeloma is associated with B-cell gene expression. Blood. 2021;137:3604–15.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chow S, Kis O, Mulder DT, Danesh A, Bruce J, Wang TT, et al. Myeloma immunoglobulin rearrangement and translocation detection through targeted capture sequencing. Life Sci Alliance. 2023;6.

Algarin EM, Quwaider D, Campos-Laborie FJ, Diaz-Tejedor A, Mogollon P, Vuelta E, et al. Stroma-mediated resistance to S63845 and Venetoclax through MCL-1 and BCL-2 expression changes induced by miR-193b-3p and miR-21-5p dysregulation in multiple myeloma. Cells 2021;10.

Ning K, Liu S, Yang B, Wang R, Man G, Wang DE, et al. Update on the effects of energy metabolism in bone marrow mesenchymal stem cells differentiation. Mol Metab. 2022;58:101450.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Buschhaus JM, Rajendran S, Chen S, Wharram BL, Bevoor AS, Cutter AC, et al. Bone marrow mesenchymal stem cells induce metabolic plasticity in estrogen receptor-positive breast cancer. Mol Cancer Res. 2023;21:458–71.

Cheng J, Nanayakkara G, Shao Y, Cueto R, Wang L, Yang WY, et al. Mitochondrial proton leak plays a critical role in pathogenesis of cardiovascular diseases. Adv Exp Med Biol. 2017;982:359–70.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Palma FR, Gantner BN, Sakiyama MJ, Kayzuka C, Shukla S, Lacchini R, et al. ROS production by mitochondria: function or dysfunction?. Oncogene. 2024;43:295–303.

Article  CAS  PubMed  Google Scholar 

Zorova LD, Popkov VA, Plotnikov EY, Silachev DN, Pevzner IB, Jankauskas SS, et al. Mitochondrial membrane potential. Anal Biochem. 2018;552:50–59.

Article  CAS  PubMed  Google Scholar 

Melber A, Haynes CM. UPR(mt) regulation and output: a stress response mediated by mitochondrial-nuclear communication. Cell Res. 2018;28:281–95.

Article  CAS 

Comments (0)

No login
gif