Improving the Functional and Antibacterial Properties of an Endoprosthetic Mesh Using Atomic Layer Deposition Technology

Kirienko, A.I., Shevtsov, Yu.N., Nikishkov, A.S., Selivestrov, E.I., Andriyashkin, A.V., Tatarintsev, A.M., and Zolotukhin, I.A., Incidence of abdominal wall hernias: The results of population study, Khirurgiya , 2016, vol. 8, pp. 61–66. https://doi.org/10.17116/hirurgia2016861-66

Article  Google Scholar 

Fortelny, R.H. and Dietz, U., Incisional hernias: Epidemiology, evidence and guidelines, Chirurgie (Heidelberg, Ger.), 2024, vol. 95, no. 1, pp. 3–9. https://doi.org/10.1007/s00104-023-01999-3

Luijendijk, R.W., Hop, W.C., and van den Tol, M.P., A comparison of suture repair with mesh repair for incisional hernia, N. Engl. J. Med., 2000, vol. 343, pp. 392–398.

Article  CAS  PubMed  Google Scholar 

Deysine, M., Pathophysiology, prevention, and management of prosthetic infections in hernia surgery, Surg. Clin. North Am., 1998, vol. 78, pp. 1105–1115.

Article  CAS  PubMed  Google Scholar 

Salwiczek, M., Qu, Y., Gardiner, J., Strugnell, R.A., Lithgow, T., McLean, K.M., and Thissen, H., Emerging rules for effective antimicrobial coatings, Trends Biotechnol., 2014, vol. 32, pp. 82–90.

Article  CAS  PubMed  Google Scholar 

Vasilev, K., Cook, J., and Griesser, H.J., Antibacterial surfaces for biomedical devices, Expert Rev. Med. Devices, 2009, vol. 6, no. 5, pp. 553–567. https://doi.org/10.1586/erd.09.36

Article  PubMed  Google Scholar 

Gupta, S.M. and Tripathi, M., A review of TiO2 nanoparticles, Chin. Sci. Bull., 2011, vol. 56, pp. 1639–1657.

Article  CAS  Google Scholar 

Keleher, J., Bashant, J., Heldt, N., Johnson, L., and Li, Y., Photo-catalytic preparation of silver-coated TiO2 particles for antibacterial applications, World J. Microbiol. Biotechnol., 2002, vol. 18, pp. 133−139.

Article  CAS  Google Scholar 

Nakano, R., Hara, M., Ishiguro, H., Yao, Y., Ochiai, T., Nakata, K., Murakami, T., Kajioka, J., Sunada, K., and Hashimoto, K., Broad spectrum microbicidal activity of photocatalysis by TiO2, Catalysts, 2013, vol. 3, pp. 310–323.

Article  CAS  Google Scholar 

Ashkarran, A.A., Aghigh, S.M., Kavianipour, M., and Farahani, N.J., Visible light photo-and bioactivity of Ag/TiO2 nanocomposite with various silver contents, Curr. Appl. Phys., 2011, vol. 11, no. 4, pp. 1048–1055. https://doi.org/10.1016/j.cap.2011.01.042

Article  Google Scholar 

Iconaru, S.L., Chapon, P., Le Coustumer, Ph., and Predoi, D., Antimicrobial activity of thin solid films of silver doped hydroxyapatite prepared by sol-gel method, Sci. World J., 2014, vol. 2014, p. 165351.

Meng, D., Liu, X., Xie, Y., Du, Y., Yang, Y., and Xiao, Ch., Antibacterial activity of visible light-activated TiO2 thin films with low level of Fe doping, Adv. Mater. Sci. Eng., 2019, vol. 2019, p. 5819805. https://doi.org/10.1155/2019/5819805

Karunakaran, C., Abiramasundari, G., Gomathisankar, P., Manikandan, G., and Anandi, V., Cu-doped TiO2 nano-particles for photocatalytic disinfection of bacteria under visible light, J. Colloid Interface Sci., 2010, vol. 352, pp. 68–74.

Article  CAS  PubMed  Google Scholar 

Mathew, S., Ganguly, P., and Rhatigan, S., Cu-doped TiO2: Visible light assisted photocatalytic antimicrobial activity, Appl. Sci., 2018, vol. 8, p. 2067.

Article  CAS  Google Scholar 

Zhou, W., Liu, Q., Zhu, Z., and Zhang, J., Preparation and properties of vanadium-doped TiO2 photocatalysts, J. Phys. D: Appl. Phys., 2010, vol. 43, no. 3, p. 035301.

Article  Google Scholar 

Comments (0)

No login
gif