Development of Technology for Applying Nanocoatings to Surgical Meshes and Study of the Functional Properties of the Resulting Nanofilms

World Health Organization. Disease and Mortality Statistics. https://www.who.int. Cited August 17, 2024.

HerniaSurge Group, International guidelines for groin hernia management, Hernia, 2018, vol. 22, no. 1, pp. 1–165. https://doi.org/10.1007/s10029-017-1668-x

Article  Google Scholar 

Carlson, J., Smith, R., and Johnson, T., Antibacterial properties of nanoparticle-coated meshes, J. Surg. Res., 2020, vol. 251, pp. 45–52. https://doi.org/10.1016/j.jss.2019.09.030

Article  CAS  Google Scholar 

Iwashkin, M.S. and Petrov, D.N., Research on the mechanical strength and elasticity of meshes with nanocoating, Med. Equip. J., 2021, vol. 35, no. 2, pp. 112–119. https://doi.org/10.1016/j.mej.2021.02.005

Article  Google Scholar 

Kuznetsov, A.V. and Sidorov, I.V., Development of nanostructured coatings for polypropylene meshes, Russ. J. Biomater., 2022, vol. 5, no. 3, pp. 76–83. https://doi.org/10.1177/09544119221124421

Article  Google Scholar 

Lee, H., Park, S.H., and Choi, Y.J., Impact of zinc oxide nanocoatings on bacterial colonization, J. Biomed. Mater. Res., Part A, 2019, vol. 107, no. 9, pp. 1872–1880. https://doi.org/10.1002/jbm.a.36610

Article  CAS  Google Scholar 

Ashkarran, A.A., Aghigh, S.M., Kavianipour, M., and Farahani, N.J., Visible light photo-and bioactivity of Ag/TiO2 nanocomposite with various silver contents, Curr. Appl. Phys., 2011, vol. 11, no. 4, pp. 1048–1055. https://doi.org/10.1016/j.cap.2011.01.042

Article  Google Scholar 

Yang, X.X., Cao, C., Hohn, K., Erickson, L., et al., J. Catal., 2007, vol. 252, no. 2, pp. 296−302.

Martin, S.T., J. Phys. Chem., 1994, vol. 98, p. 13695.

Article  CAS  Google Scholar 

Tian, Z.M., Yuan, S.L., Yin, S.Y., Zhang, S.Q., and Xie, H.Y., J. Magn. Magn. Mater., 2008, vol. 320, p. L5.

Article  CAS  Google Scholar 

Liu, S., Xie, T., Chen, Z., and Wu, J., J. Appl. Surf. Sci., 2009, vol. 255, p. 8587.

Article  CAS  Google Scholar 

Iconaru, S.L., Chapon, P., Le Coustumer, Ph., and Predoi, D., Antimicrobial activity of thin solid films of silver doped hydroxyapatite prepared by sol-gel method, Sci. World J., 2014, vol. 2014, p. 165351.

Article  Google Scholar 

Meng, D., Liu, X., Xie, Y., Du, Y., Yang, Y., and Xiao, Ch., Antibacterial activity of visible light-activated TiO2 thin films with low level of Fe doping, Adv. Mat. Sci. Eng., 2019, vol. 2019, p. 5819805. https://doi.org/10.1155/2019/5819805

Article  CAS  Google Scholar 

Karunakaran, C., Abiramasundari, G., Gomathisankar, P., Manikandan, G., and Anandi, V., Cu-doped TiO2 nano-particles for photocatalytic disinfection of bacteria under visible light, J. Colloid Interface Sci., 2010, vol. 352, pp. 68–74.

Article  CAS  PubMed  Google Scholar 

Mathew, S., Ganguly, P., and Rhatigan, S., Cu-doped TiO2: Visible light assisted photocatalytic antimicrobial activity, Appl. Sci., 2018, vol. 8, p. 2067.

Article  CAS  Google Scholar 

Zhou, W., Liu, Q., Zhu, Z., and Zhang, J., Preparation and properties of vanadium-doped TiO2 photocatalysts, J. Phys. D: Appl. Phys., 2010, vol. 43, p. 035301.

Article  Google Scholar 

Comments (0)

No login
gif