The Features of the Genetically-Encoded Biosensor to PIP3 Influence on Insulin Signaling in MSCs

Greenwald, E.C., Mehta, S., and Zhang, J., Genetically encoded fluorescent biosensors illuminate the spatiotemporal regulation of signaling networks, Chem. Rev., 2018, vol. 118, no. 24, pp. 11707–11794. https://doi.org/10.1021/acs.chemrev.8b00333

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kostyuk, A.I., Panova, A.S., Kokova, A.D., Kotova, D.A., Maltsev, D.I., Podgorny, O.V., Belousov, V.V., and Bilan, D.S., In vivo imaging with genetically encoded redox biosensors, Int. J. Mol. Sci., 2020, vol. 21, no. 21, p. 8164. https://doi.org/10.3390/ijms21218164

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stepanov, A.I., Shuvaeva, A.A., Putlyaeva, L.V., Lukyanov, D.K., Galiakberova, A.A., Gorbachev, D.A., Maltsev, D.I., Pronina, V., Dylov, D.V., Terskikh, A.V., Lukyanov, K.A., and Gurskaya, N.G., Tracking induced pluripotent stem cell differentiation with a fluorescent genetically encoded epigenetic probe, Cell. Mol. Life Sci., 2024, vol. 81, no. 1, p. 381. https://doi.org/10.1007/s00018-024-05359-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mo, G.C., Ross, B., Hertel, F., Manna, P., Yang, X., Greenwald, E., Booth, C., Plummer, A.M., Tenner, B., Chen, Z., Wang, Y., Kennedy, E.J., Cole, P.A., Fleming, K.G., Palmer, A., Jimenez, R., Xiao, J., Dedecker, P., and Zhang, J., Genetically encoded biosensors for visualizing live-cell biochemical activity at super-resolution, Nat. Methods, 2017, vol. 14, no. 4, pp. 427–434. https://doi.org/10.1038/nmeth.4221

Article  CAS  PubMed  PubMed Central  Google Scholar 

Richardson, D.S., Gregor, C., Winter, F.R., Urban, N.T., Sahl, S.J., Willig, K.I., and Hell, S.W., SRpHi ratiometric pH biosensors for super-resolution microscopy, Nat. Commun., 2017, vol. 8, no. 1, p. 577. https://doi.org/10.1038/s41467-017-00606-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fetz, V., Stauber, R.H., and Knauer, S.K., Translocation biosensors-versatile tools to probe protein functions in living cells, in High Content Screening, Methods in Molecular Biology, vol. 1683, New York: Humana, 2018, pp. 195–210. https://doi.org/10.1007/978-1-4939-7357-6_12

Ovechkina, V.S., Zakian, S.M., Medvedev, S.P., and Valetdinova, K.R., Genetically encoded fluorescent biosensors for biomedical applications, Biomedicines, 2021, vol. 9, no. 11, p. 1528. https://doi.org/10.3390/biomedicines9111528

Article  CAS  PubMed  PubMed Central  Google Scholar 

Newman, R.H., Fosbrink, M.D., and Zhang, J., Genetically encodable fluorescent biosensors for tracking signaling dynamics in living cells, Chem. Rev., 2011, vol. 111, no. 5, pp. 3614–3666. https://doi.org/10.1021/cr100002u

Article  CAS  PubMed  PubMed Central  Google Scholar 

Salahpour, A., Espinoza, S., Masri, B., Lam, V., Barak, L.S., and Gainetdinov, R.R., BRET biosensors to study GPCR biology, pharmacology, and signal transduction, Front. Endocrinol. (Lausanne), 2012, vol. 3, p. 105. https://doi.org/10.3389/fendo.2012.00105

Article  Google Scholar 

Ast, C., Foret, J., Oltrogge, L.M., De Michele, R., Kleist, T.J., Ho, C.H., and Frommer, W.B., Ratiometric Matryoshka biosensors from a nested cassette of green- and orange-emitting fluorescent proteins, Nat. Commun., 2017, vol. 8, no. 1, p. 431. https://doi.org/10.1038/s41467-017-00400-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao, Y., Hu, Q., Cheng, F., Su, N., Wang, A., Zou, Y., Hu, H., Chen, X., Zhou, H.M., Huang, X., Yang, K., Zhu, Q., Wang, X., Yi, J., Zhu, L., Qian, X., Chen, L., Tang, Y., Loscalzo, J., and Yang, Y., SoNar, a highly responsive NAD+/NADH sensor, allows high-throughput metabolic screening of anti-tumor agents, Cell. Metab., 2015, vol. 21, no. 5, pp. 777–789. https://doi.org/10.1016/j.cmet.2015.04.009

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, H.S., Jan, M.S., Chou, C.K., Chen, P.H., and Ke, N.J., Is green fluorescent protein toxic to the living cells?, Biochem. Biophys. Res. Commun., 1999, vol. 260, no. 3, pp. 712–717. https://doi.org/10.1006/bbrc.1999.0954

Article  CAS  PubMed  Google Scholar 

Baens, M., Noels, H., Broeckx, V., Hagens, S., Fevery, S., Billiau, A.D., Vankelecom, H., and Marynen, P., The dark side of EGFP: defective polyubiquitination, PLoS One, 2006, vol. 1, p. e54. https://doi.org/10.1371/journal.pone.0000054

Article  CAS  PubMed  PubMed Central  Google Scholar 

Verma, S., Moreno, I.Y., Gesteira, T.F., and Coulson-Thomas, V.J., Toxicity of nuclear-localized GFP in reporter mice, Sci. Rep., 2024, vol. 14, no. 1, p. 24642. https://doi.org/10.1038/s41598-024-75741-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goto, H., Yang, B., Petersen, D., Pepper, K.A., Alfaro, P.A., Kohn, D.B., and Reynolds, C.P., Transduction of green fluorescent protein increased oxidative stress and enhanced sensitivity to cytotoxic drugs in neuroblastoma cell lines, Mol. Cancer Ther., 2003, vol. 2, no. 9, pp. 911–917.

CAS  PubMed  Google Scholar 

Thummer, R.P., Drenth-Diephuis, L.J., and Eggen, B.J.L., Constitutive GFP-UTF1 expression interferes with ES and EC cell differentiation, J. Stem Cell Res. Ther., 2012, vol. 2, p. 127. https://doi.org/10.4172/2157-7633.1000127

Article  CAS  Google Scholar 

Ansari, A.M., Ahmed, A.K., Matsangos, A.E., Lay, F., Born, L.J., Marti, G., Harmon, J.W., and Sun, Z., Cellular GFP toxicity and immunogenicity: Potential confounders in in vivo cell tracking experiments, Stem Cell Rev. Rep., 2016, vol. 12, no. 5, pp. 553–559. https://doi.org/10.1007/s12015-016-9670-8

Article  CAS  PubMed  Google Scholar 

Várnai, P., Rother, K.I., and Balla, T., Phosphatidylinositol 3-kinase-dependent membrane association of the Bruton’s tyrosine kinase pleckstrin homology domain visualized in single living cells, J. Biol. Chem., 1999, vol. 274, no. 16, pp. 10983–10989. https://doi.org/10.1074/jbc.274.16.10983

Article  PubMed  Google Scholar 

Evseeva, M.N., Balashova, M.S., Kulebyakin, K.Y., and Rubtsov, Y.P., Adipocyte biology from the perspective of in vivo research: Review of key transcription factors, Int. J. Mol. Sci., 2021, vol. 23, no. 1, p. 322. https://doi.org/10.3390/ijms23010322

Article  CAS  PubMed  PubMed Central  Google Scholar 

Salim, K., Bottomley, M.J., Querfurth, E., Zvelebil, M.J., Gout, I., Scaife, R., Margolis, R.L., Gigg, R., Smith, C.I., Driscoll, P.C., Waterfield, M.D., and Panayotou, G., Distinct specificity in the recognition of phosphoinositides by the pleckstrin homology domains of dynamin and Bruton’s tyrosine kinase, EMBO J., 1996, vol. 15, no. 22, pp. 6241–6250.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Primak, A., Kalinina, N., Skryabina, M., Usachev, V., Chechekhin, V., Vigovskiy, M., Chechekhina, E., Voloshin, N., Kulebyakin, K., Kulebyakina, M., Grigorieva, O., Tyurin-Kuzmin, P., Basalova, N., Efimenko, A., Dzhauari, S., Antropova, Y., Plyushchii, I., Akopyan, Z., Sysoeva, V., Tkachuk, V., and Karagyaur, M., Novel immortalized human multipotent mesenchymal stromal cell line for studying hormonal signaling, Int. J. Mol. Sci., 2024, vol. 25, no. 4, p. 2421. https://doi.org/10.3390/ijms25042421

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tyurin-Kuzmin, P.A., Karagyaur, M.N., Kulebyakin, K.Y., Dyikanov, D.T., Chechekhin, V.I., Ivanova, A.M., Skryabina, M.N., Arbatskiy, M.S., Sysoeva, V.Y., Kalinina, N.I., and Tkachuk, V.A., Functional heterogeneity of protein kinase A activation in multipotent stromal cells, Int. J. Mol. Sci., 2020, vol. 21, no. 12, p. 4442. https://doi.org/10.3390/ijms21124442

Article  CAS  PubMed  PubMed Central  Google Scholar 

Longo, P.A., Kavran, J.M., Kim, M.S., and Leahy, D.J., Transient mammalian cell transfection with polyethylenimine (PEI), Methods Enzymol., 2013, vol. 529, pp. 227–240. https://doi.org/10.1016/B978-0-12-418687-3.00018-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sysoeva, V., Semina, E., Klimovich, P., Kulebyakin, K., Dzreyan, V., Sotskaya, E., Shchipova, A., Khabibullin, N., Voloshin, N., Tkachuk, V., and Rubina, K., T-cadherin modulates adipogenic differentiation in mesenchymal stem cells: insights into ligand interactions, Front. Cell Dev. Biol., 2024, vol. 12, p. 1446363. https://doi.org/10.3389/fcell.2024.1446363

Article  PubMed  PubMed Central  Google Scholar 

Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 1970, vol. 227, no. 5259, pp. 680–685. https://doi.org/10.1038/227680a0

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif