Greenwald, E.C., Mehta, S., and Zhang, J., Genetically encoded fluorescent biosensors illuminate the spatiotemporal regulation of signaling networks, Chem. Rev., 2018, vol. 118, no. 24, pp. 11707–11794. https://doi.org/10.1021/acs.chemrev.8b00333
Article CAS PubMed PubMed Central Google Scholar
Kostyuk, A.I., Panova, A.S., Kokova, A.D., Kotova, D.A., Maltsev, D.I., Podgorny, O.V., Belousov, V.V., and Bilan, D.S., In vivo imaging with genetically encoded redox biosensors, Int. J. Mol. Sci., 2020, vol. 21, no. 21, p. 8164. https://doi.org/10.3390/ijms21218164
Article CAS PubMed PubMed Central Google Scholar
Stepanov, A.I., Shuvaeva, A.A., Putlyaeva, L.V., Lukyanov, D.K., Galiakberova, A.A., Gorbachev, D.A., Maltsev, D.I., Pronina, V., Dylov, D.V., Terskikh, A.V., Lukyanov, K.A., and Gurskaya, N.G., Tracking induced pluripotent stem cell differentiation with a fluorescent genetically encoded epigenetic probe, Cell. Mol. Life Sci., 2024, vol. 81, no. 1, p. 381. https://doi.org/10.1007/s00018-024-05359-0
Article CAS PubMed PubMed Central Google Scholar
Mo, G.C., Ross, B., Hertel, F., Manna, P., Yang, X., Greenwald, E., Booth, C., Plummer, A.M., Tenner, B., Chen, Z., Wang, Y., Kennedy, E.J., Cole, P.A., Fleming, K.G., Palmer, A., Jimenez, R., Xiao, J., Dedecker, P., and Zhang, J., Genetically encoded biosensors for visualizing live-cell biochemical activity at super-resolution, Nat. Methods, 2017, vol. 14, no. 4, pp. 427–434. https://doi.org/10.1038/nmeth.4221
Article CAS PubMed PubMed Central Google Scholar
Richardson, D.S., Gregor, C., Winter, F.R., Urban, N.T., Sahl, S.J., Willig, K.I., and Hell, S.W., SRpHi ratiometric pH biosensors for super-resolution microscopy, Nat. Commun., 2017, vol. 8, no. 1, p. 577. https://doi.org/10.1038/s41467-017-00606-4
Article CAS PubMed PubMed Central Google Scholar
Fetz, V., Stauber, R.H., and Knauer, S.K., Translocation biosensors-versatile tools to probe protein functions in living cells, in High Content Screening, Methods in Molecular Biology, vol. 1683, New York: Humana, 2018, pp. 195–210. https://doi.org/10.1007/978-1-4939-7357-6_12
Ovechkina, V.S., Zakian, S.M., Medvedev, S.P., and Valetdinova, K.R., Genetically encoded fluorescent biosensors for biomedical applications, Biomedicines, 2021, vol. 9, no. 11, p. 1528. https://doi.org/10.3390/biomedicines9111528
Article CAS PubMed PubMed Central Google Scholar
Newman, R.H., Fosbrink, M.D., and Zhang, J., Genetically encodable fluorescent biosensors for tracking signaling dynamics in living cells, Chem. Rev., 2011, vol. 111, no. 5, pp. 3614–3666. https://doi.org/10.1021/cr100002u
Article CAS PubMed PubMed Central Google Scholar
Salahpour, A., Espinoza, S., Masri, B., Lam, V., Barak, L.S., and Gainetdinov, R.R., BRET biosensors to study GPCR biology, pharmacology, and signal transduction, Front. Endocrinol. (Lausanne), 2012, vol. 3, p. 105. https://doi.org/10.3389/fendo.2012.00105
Ast, C., Foret, J., Oltrogge, L.M., De Michele, R., Kleist, T.J., Ho, C.H., and Frommer, W.B., Ratiometric Matryoshka biosensors from a nested cassette of green- and orange-emitting fluorescent proteins, Nat. Commun., 2017, vol. 8, no. 1, p. 431. https://doi.org/10.1038/s41467-017-00400-2
Article CAS PubMed PubMed Central Google Scholar
Zhao, Y., Hu, Q., Cheng, F., Su, N., Wang, A., Zou, Y., Hu, H., Chen, X., Zhou, H.M., Huang, X., Yang, K., Zhu, Q., Wang, X., Yi, J., Zhu, L., Qian, X., Chen, L., Tang, Y., Loscalzo, J., and Yang, Y., SoNar, a highly responsive NAD+/NADH sensor, allows high-throughput metabolic screening of anti-tumor agents, Cell. Metab., 2015, vol. 21, no. 5, pp. 777–789. https://doi.org/10.1016/j.cmet.2015.04.009
Article CAS PubMed PubMed Central Google Scholar
Liu, H.S., Jan, M.S., Chou, C.K., Chen, P.H., and Ke, N.J., Is green fluorescent protein toxic to the living cells?, Biochem. Biophys. Res. Commun., 1999, vol. 260, no. 3, pp. 712–717. https://doi.org/10.1006/bbrc.1999.0954
Article CAS PubMed Google Scholar
Baens, M., Noels, H., Broeckx, V., Hagens, S., Fevery, S., Billiau, A.D., Vankelecom, H., and Marynen, P., The dark side of EGFP: defective polyubiquitination, PLoS One, 2006, vol. 1, p. e54. https://doi.org/10.1371/journal.pone.0000054
Article CAS PubMed PubMed Central Google Scholar
Verma, S., Moreno, I.Y., Gesteira, T.F., and Coulson-Thomas, V.J., Toxicity of nuclear-localized GFP in reporter mice, Sci. Rep., 2024, vol. 14, no. 1, p. 24642. https://doi.org/10.1038/s41598-024-75741-2
Article CAS PubMed PubMed Central Google Scholar
Goto, H., Yang, B., Petersen, D., Pepper, K.A., Alfaro, P.A., Kohn, D.B., and Reynolds, C.P., Transduction of green fluorescent protein increased oxidative stress and enhanced sensitivity to cytotoxic drugs in neuroblastoma cell lines, Mol. Cancer Ther., 2003, vol. 2, no. 9, pp. 911–917.
Thummer, R.P., Drenth-Diephuis, L.J., and Eggen, B.J.L., Constitutive GFP-UTF1 expression interferes with ES and EC cell differentiation, J. Stem Cell Res. Ther., 2012, vol. 2, p. 127. https://doi.org/10.4172/2157-7633.1000127
Ansari, A.M., Ahmed, A.K., Matsangos, A.E., Lay, F., Born, L.J., Marti, G., Harmon, J.W., and Sun, Z., Cellular GFP toxicity and immunogenicity: Potential confounders in in vivo cell tracking experiments, Stem Cell Rev. Rep., 2016, vol. 12, no. 5, pp. 553–559. https://doi.org/10.1007/s12015-016-9670-8
Article CAS PubMed Google Scholar
Várnai, P., Rother, K.I., and Balla, T., Phosphatidylinositol 3-kinase-dependent membrane association of the Bruton’s tyrosine kinase pleckstrin homology domain visualized in single living cells, J. Biol. Chem., 1999, vol. 274, no. 16, pp. 10983–10989. https://doi.org/10.1074/jbc.274.16.10983
Evseeva, M.N., Balashova, M.S., Kulebyakin, K.Y., and Rubtsov, Y.P., Adipocyte biology from the perspective of in vivo research: Review of key transcription factors, Int. J. Mol. Sci., 2021, vol. 23, no. 1, p. 322. https://doi.org/10.3390/ijms23010322
Article CAS PubMed PubMed Central Google Scholar
Salim, K., Bottomley, M.J., Querfurth, E., Zvelebil, M.J., Gout, I., Scaife, R., Margolis, R.L., Gigg, R., Smith, C.I., Driscoll, P.C., Waterfield, M.D., and Panayotou, G., Distinct specificity in the recognition of phosphoinositides by the pleckstrin homology domains of dynamin and Bruton’s tyrosine kinase, EMBO J., 1996, vol. 15, no. 22, pp. 6241–6250.
Article CAS PubMed PubMed Central Google Scholar
Primak, A., Kalinina, N., Skryabina, M., Usachev, V., Chechekhin, V., Vigovskiy, M., Chechekhina, E., Voloshin, N., Kulebyakin, K., Kulebyakina, M., Grigorieva, O., Tyurin-Kuzmin, P., Basalova, N., Efimenko, A., Dzhauari, S., Antropova, Y., Plyushchii, I., Akopyan, Z., Sysoeva, V., Tkachuk, V., and Karagyaur, M., Novel immortalized human multipotent mesenchymal stromal cell line for studying hormonal signaling, Int. J. Mol. Sci., 2024, vol. 25, no. 4, p. 2421. https://doi.org/10.3390/ijms25042421
Article CAS PubMed PubMed Central Google Scholar
Tyurin-Kuzmin, P.A., Karagyaur, M.N., Kulebyakin, K.Y., Dyikanov, D.T., Chechekhin, V.I., Ivanova, A.M., Skryabina, M.N., Arbatskiy, M.S., Sysoeva, V.Y., Kalinina, N.I., and Tkachuk, V.A., Functional heterogeneity of protein kinase A activation in multipotent stromal cells, Int. J. Mol. Sci., 2020, vol. 21, no. 12, p. 4442. https://doi.org/10.3390/ijms21124442
Article CAS PubMed PubMed Central Google Scholar
Longo, P.A., Kavran, J.M., Kim, M.S., and Leahy, D.J., Transient mammalian cell transfection with polyethylenimine (PEI), Methods Enzymol., 2013, vol. 529, pp. 227–240. https://doi.org/10.1016/B978-0-12-418687-3.00018-5
Article CAS PubMed PubMed Central Google Scholar
Sysoeva, V., Semina, E., Klimovich, P., Kulebyakin, K., Dzreyan, V., Sotskaya, E., Shchipova, A., Khabibullin, N., Voloshin, N., Tkachuk, V., and Rubina, K., T-cadherin modulates adipogenic differentiation in mesenchymal stem cells: insights into ligand interactions, Front. Cell Dev. Biol., 2024, vol. 12, p. 1446363. https://doi.org/10.3389/fcell.2024.1446363
Article PubMed PubMed Central Google Scholar
Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 1970, vol. 227, no. 5259, pp. 680–685. https://doi.org/10.1038/227680a0
Comments (0)