Pathogenetic Potential of the Epigenetic Status of Genes of Mendelian Forms of Thoracic Aortic Aneurysms

Mangum, K.D. and Farber, M.A., Genetic and epigenetic regulation of abdominal aortic aneurysms, Clin. Genet., 2020, vol. 97, no. 6, pp. 815–826. https://doi.org/10.1111/cge.13705

Article  CAS  PubMed  Google Scholar 

Gouveia e Melo, R., Silva Duarte, G., Lopes, A., Alves, M., Caldeira, D., Fernandes e Fernandes, R., and Mendes Pedro, L., Incidence and prevalence of thoracic aortic aneurysms: A systematic review and meta-analysis of population-based studies, Semin. Thorac. Cardiovasc. Surg., 2022, vol. 34, no. 1, pp. 1–16.  https://doi.org/10.1053/j.semtcvs.2021.02.029

Article  Google Scholar 

Tomee, S.M., Bulder, R.M.A., Meijer, C.A., Van Berkum, I., Hinnen, J.-W., Schoones, J.W., Golledge, J., Bastiaannet, E., Matsumura, J.S., Hamming, J.F., Hultgren, R., and Lindeman, J.H., Excess mortality for abdominal aortic aneurysms and the potential of strict implementation of cardiovascular risk management: A multifaceted study integrating meta-analysis, national registry, and PHAST and TEDY trial data, Eur. J. Vasc. Endovasc. Surg., 2023, vol. 65, no. 3, pp. 348–357.  https://doi.org/10.1016/j.ejvs.2022.11.019

Article  PubMed  Google Scholar 

Isselbacher, E.M., Preventza, O., Hamilton Black, J., Augoustides, J.G., Beck, A.W., Bolen, M.A., Braverman, A.C., Bray, B.E., Brown-Zimmerman, M.M., Chen, E.P., Collins, T.J., DeAnda, A., Fanola, C.L., Girardi, L.N., Hicks, C.W., Hui, D.S., Schuyler Jones, W., Kalahasti, V., Kim, K.M., Milewicz, D.M., Oderich, G.S., Ogbechie, L., Promes, S.B., Gyang Ross, E., Schermerhorn, M.L., Singleton Times, S., Tseng, E.E., Wang, G.J., Woo, Y.J., Faxon, D.P., Upchurch, G.R., Aday, A.W., Azizzadeh, A., Boisen, M., Hawkins, B., Kramer, C.M., Luc, J.G.Y., MacGillivray, T.E., Malaisrie, S. C., Osteen, K., Patel, H.J., Patel, P.J., Popescu, W.M., Rodriguez, E., Sorber, R., Tsao, P.S., and Santos Volgman, A., 2022 ACC/AHA guideline for the diagnosis and management of aortic disease: A report of the American Heart Association/American College of Cardiology joint committee on clinical practice guidelines, Circulation, 2022, vol. 146, no. 24, pp. e334–e482.  https://doi.org/10.1161/CIR.0000000000001106

Article  PubMed  Google Scholar 

Zhou, Z., Cecchi, A.C., Prakash, S.K., and Milewicz, D.M., Risk factors for thoracic aortic dissection, Genes (Basel), 2022, vol. 13, no. 10, p. 1814.  https://doi.org/10.3390/genes13101814

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao, J., Cao, H., Hu, G., Wu, Y., Xu, Y., Cui, H., Lu, H.S., and Zheng, L., The mechanism and therapy of aortic aneurysms, Signal Transduction Targeted Ther., 2023, vol. 8, no. 1, p. 55.  https://doi.org/10.1038/s41392-023-01325-7

Article  Google Scholar 

Biddinger, A., Rocklin, M., Coselli, J., and Milewicz, D.M., Familial thoracic aortic dilatations and dissections: A case control study, J. Vasc. Surg., 1997, vol. 25, no. 3, pp. 506–511.  https://doi.org/10.1016/s0741-5214(97)70261-1

Article  CAS  PubMed  Google Scholar 

Clouse, W.D., Hallett, J.W., Jr., Schaff, H.V., Gayari, M.M., Ilstrup, D.M., and Melton L.J. III, Improved prognosis of thoracic aortic aneurysms: A population-based study, J. Am. Heart Assoc., 1998, vol. 280, no. 22, pp. 1926–1929.  https://doi.org/10.1001/jama.280.22.1926

Article  CAS  Google Scholar 

Coady, M.A., Davies, R.R., Roberts, M., Goldstein, L.J., Rogalski, M.J., Rizzo, J.A., Hammond, G.L., Kopf, G.S., and Elefteriades, J.A., Familial patterns of thoracic aortic aneurysms, Arch. Surg., 1999, vol. 134, no. 4, pp. 361–367.  https://doi.org/10.1001/archsurg.134.4.361

Article  CAS  PubMed  Google Scholar 

Albornoz, G., Coady, M.A., Roberts, M., Davies, R.R., Tranquilli, M., Rizzo, J.A., and Elefteriades, J.A., Familial thoracic aortic aneurysms and dissections–incidence, modes of inheritance, and phenotypic patterns, Ann. Thorac. Surg., 2006, vol. 82, no. 4, pp. 1400–1405.  https://doi.org/10.1016/j.athoracsur.2006.04.098

Article  PubMed  Google Scholar 

Duarte, V.E., Yousefzai, R., and Singh, M.N., Genetically triggered thoracic aortic disease: Who should be tested?, Methodist Debakey Cardiovasc. J., 2023, vol. 19, no. 2, pp. 24–28.  https://doi.org/10.14797/mdcvj.1218

Article  PubMed  PubMed Central  Google Scholar 

Krywanczyk, A., Rodriguez, E.R., Tan, C.D., and Gilson, T., Thoracic aortic aneurysm and dissection: Review and recommendations for evaluation, Am. J. Forensic Med. Pathol., 2023, vol. 44, no. 2, pp. 69–76.  https://doi.org/10.1097/PAF.0000000000000819

Article  PubMed  Google Scholar 

Monda, E., Lioncino, M., Verrillo, F., Rubino, M., Caiazza, M., Mauriello, A., Guarnaccia, N., Fusco, A., Cirillo, A., Covino, S., Altobelli, I., Diana, G., Palmiero, G., Dongiglio, F., Natale, F., Cesaro, A., Bossone, E., Russo, M.G., Calabrò, P., and Limongelli, G., The role of genetic testing in patients with heritable thoracic aortic diseases, Diagnostics (Basel), 2023, vol. 13, no. 4, p. 772. https://doi.org/10.3390/diagnostics13040772

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gouveia e Melo, R., Silva Duarte, G., Lopes, A., Alves, M., Caldeira, D., Fernandes e Fernandes, R., and Mendes Pedro, L., Synchronous and metachronous thoracic aortic aneurysms in patients with abdominal aortic aneurysms: A systematic review and meta-analysis, J. Am. Heart Assoc., 2020, vol. 9, no. 21, p. e017468.  https://doi.org/10.1161/JAHA.120.017468

Article  Google Scholar 

Sollis, E., Mosaku, A., Abid, A., Buniello, A., Cerezo, M., Gil, L., Groza, T., Güneş, O., Hall, P., Hayhurst, J., Ibrahim, A., Ji, Y., John, S., Lewis, E., MacArthur, J.A.L, McMahon, A., Osumi-Suther-land, D., Panoutsopoulou, K., Pendlington, Z., Ramachandran, S., Stefancsik, R., Stewart, J., Whetzel, P., Wilson, R., Hindorff, L., Cunningham, F., Lam-bert, S.A., Inouye, M., Parkinson H., and Harris, L.W., The NHGRI-EBI GWAS catalog: Knowledgebase and deposition resource, Nucleic Acids Res., 2022, vol. 51, no. D1, pp. D977–D985.  https://doi.org/10.1093/nar/gkac1010

Article  CAS  PubMed Central  Google Scholar 

Krishna, S.M., Dear, A.E., Norman, P.E., and Golledge, J., Genetic and epigenetic mechanisms and their possible role in abdominal aortic aneurysm, Atherosclerosis, 2010, vol. 212, no. 1, pp. 16–29.  https://doi.org/10.1016/j.atherosclerosis.2010.02.008

Article  CAS  PubMed  Google Scholar 

Ryer, E., Ronning, K., Erdman, R., Schworer, C., Elmore, J., Peeler, T., Nevius, C., Lillvis, J., Garvin, R., Franklin, D., Kuivaniemi, H., and Tromp, G., The potential role of DNA methylation in abdominal aortic aneurysms, Int. J. Mol. Sci., 2015, vol. 16, no. 5, pp. 11259–11275.  https://doi.org/10.3390/ijms160511259

Article  CAS  PubMed  PubMed Central  Google Scholar 

Han, Y., Tanios, F., Reeps, C., Zhang, J., Schwamborn, K., Eckstein, H.-H., Zernecke, A., and Pelisek, J., Histone acetylation and histone acetyltransferases show significant alterations in human abdominal aortic aneurysm, Clin. Epigenet., 2016, vol. 8, p. 3.  https://doi.org/10.1186/s13148-016-0169-6

Lino Cardenas, C.L., Kessinger, C.W., Cheng, Y., MacDonald, C., MacGillivray, T., Ghoshhajra, B., Huleihel, L., Nuri, S., Yeri, A.S., Jaffer, F.A., Kaminski, N., Ellinor, P., Weintraub, N.L., Malhotra, R., Isselbacher, E.M., and Lindsay, M.E., An HDAC9-MALAT1-BRG1 complex mediates smooth muscle dysfunction in thoracic aortic aneurysm, Nat. Commun., 2018, vol. 9, no. 1, p. 1009.  https://doi.org/10.1038/s41467-018-03394-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Portelli, S.S., Robertson, E.N., Malecki, C., Liddy, K.A., Hambly, B.D., and Jeremy, R.W., Epigenetic influences on genetically triggered thoracic aortic aneurysm, Biophys. Rev., 2018, vol. 10, no. 5, pp. 1241–1256. https://doi.org/10.1007/s12551-018-0460-1

Article  PubMed  PubMed Central  Google Scholar 

UKAGS collaborators, Toghill, B.J., Saratzis, A., Freeman, P.J., Sylvius, N., and Bown, M.J., SMYD2 promoter DNA methylation is associated with abdominal aortic aneurysm (AAA) and SMYD2 expression in vascular smooth muscle cells, Clin. Epigenet., 2018, vol. 10, p. 29.  https://doi.org/10.1186/s13148-018-0460-9

D’Amico, F., Doldo, E., Pisano, C., Scioli, M.G., Centofanti, F., Proietti, G., Falconi, M., Sangiuolo, F., Ferlosio, A., Ruvolo, G., and Orlandi, A., Specific miRNA and gene deregulation characterize the increased angiogenic remodeling of thoracic aneurysmatic aortopathy in Marfan syndrome, Int. J. Mol. Sci., 2020, vol. 21, no. 18, p. 6886.  https://doi.org/10.3390/ijms21186886

Article  CAS  PubMed  PubMed Central  Google Scholar 

Greenway, J., Gilreath, N., Patel, S., Horimatsu, T., Moses, M., Kim, D., Reid, L., Ogbi, M., Shi, Y., Lu, X.-Y., Shukla, M., Lee, R., Huo, Y., Young, L., Kim, H.W., and Weintraub, N.L., Profiling of histone modifications reveals epigenomic dynamics during abdominal aortic aneurysm formation in mouse models, Front. Cardiovasc. Med., 2020, vol. 7, p. 595011.  https://doi.org/10.3389/fcvm.2020.595011

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vats, S., Sundquist, K., Wang, X., Zarrouk, M., Ågren-Witteschus, S., Sundquist, J., Gottsäter, A., and Memon, A.A., Associations of global DNA methylation and homocysteine levels with abdominal aortic aneurysm: a cohort study from a population-based screening program in Sweden, Int. J. Cardiol., 2020, vol. 321, pp. 137–142.  https://doi.org/10.1016/j.ijcard.2020.06.022

Article  PubMed  Google Scholar 

Rombouts, K.B., Van Merrienboer, T.A.R., Ket, J.C.F., Bogunovic, N., Van Der Velden, J., and Yeung, K.K., The role of vascular smooth muscle cells in the development of aortic aneurysms and dissections, Eur. J. Clin. Invest., 2022, vol. 52, no. 4, p. e13697.  https://doi.org/10.1111/eci.13697

Article  CAS  PubMed  Google Scholar 

Kucher, A.N., Koroleva, I.A., and Nazarenko, M.S., Pathogenetic significance of long non-coding RNAs in the development of thoracic and abdominal aortic aneurysms, Biochemistry (Moscow), 2024, vol. 89, no. 1, pp. 130–147.  https://doi.org/10.1134/S0006297924010085

Article  CAS  PubMed  Google Scholar 

Kucher, A.N., Nazarenko, M.S., Markov, A.V., Koroleva, I.A., and Barbarash, O.L., Variability of methylation profiles of CpG sites in microRNA genes in leukocytes and vascular tissues of patients with atherosclerosis, Biochemistry (Moscow), 2017, vol. 82, no. 6, pp. 698–706.  https://doi.org/10.1134/S0006297917060062

Article 

Comments (0)

No login
gif