Food and Drug Administration (FDA) Center for drug evaluation and research. ANDAs for certain highly purified synthetic peptide drug products that refer to listed drugs of rDNA origin. 2021.
European Medicines Agency. Draft guideline on the development and manufacture of Synthetic Peptides. 2023. https://www.ema.europa.eu/en/development-and-manufacture-synthetic-peptides-scientific-guideline. Accessed 16 Oct 2024.
European Medicines Agency. Draft guideline on the development and manufacture of oligonucleotides. 2024. https://www.ema.europa.eu/en/development-manufacture-oligonucleotides-scientific-guideline. Accessed 16 Oct 2024.
European Directorate for the Quality of Medicines & HealthCare, Substances for Pharmaceutical Use. European Pharmacopeia. 2034.
Food and Drug Administration (FDA). Draft guidance on nusinersin sodium. 2022. https://www.accessdata.fda.gov/drugsatfda_docs/psg/PSG_209531.pdf. Accessed 16 Oct 2024.
Food and Drug Administration (FDA). Draft Guidance on inclisiran sodium. 2023. https://www.accessdata.fda.gov/drugsatfda_docs/psg/PSG_214012.pdf. Accessed 16 Oct 2024.
Graham JC, Powley MW, Udovic E, Glowienke S, Nicolette J, Parris P, et al. Calculating qualified non-mutagenic impurity levels: Harmonization of approaches. Regul Toxicol Pharmacol. 2021;126:105023. https://doi.org/10.1016/j.yrtph.2021.105023.
Zushin PH, Mukherjee S, Wu JC. FDA Modernization Act 2.0: transitioning beyond animal models with human cells, organoids, and AI/ML-based approaches. J Clin Invest. 2023;133(21):e175824. https://doi.org/10.1172/jci175824.
Article PubMed PubMed Central CAS Google Scholar
Hubrecht RC, Carter E. The 3Rs and Humane Experimental Technique: Implementing Change. Animals (Basel). 2019;9(10):754. https://doi.org/10.3390/ani9100754.
Mitra MS, Datta K, Hutchinson R, Nicolette JJ, Pettersen JC, Wegesser TC, et al. Harmonized 3Rs-based non-mutagenic impurity qualification study designs developed using the results of an IQ consortium survey. Regul Toxicol Pharmacol. 2021;122:104895. https://doi.org/10.1016/j.yrtph.2021.104895.
Leach MW, Rana P, Hu W, Mittapalli RK, Pinkstaff J, Potter D, et al. Translation of nonclinical to clinical safety findings for 27 biotherapeutics. Toxicol Appl Pharmacol. 2024;484:116854. https://doi.org/10.1016/j.taap.2024.116854.
Article PubMed CAS Google Scholar
International Conference on Harmonisation. (ICH) Q3C (R9) Impurities: guideline for residual solvents. 2024;Step 4.
International Council for Harmonisation. (ICH) Q3D guideline for elemental impurities. 2022.
International Council for Harmonisation. (ICH) M7 (R2). Assessment and control of DNA reactive (Mutagenic) impurities in pharmaceuticals to limit potential carcinogenic risk. 2023.
The Pharmacopeia of the United States of America and the National Formulary (USP–NF) USP-NP. General Chapter, 〈1469〉 Nitrosamine Impurities. 2024.
Munro IC, Ford RA, Kennepohl E, Sprenger JG. Correlation of structural class with no-observed-effect levels: a proposal for establishing a threshold of concern. Food Chem Toxicol. 1996;34(9):829–67. https://doi.org/10.1016/s0278-6915(96)00049-x.
Article PubMed CAS Google Scholar
Munro IC, Renwick AG, Danielewska-Nikiel B. The Threshold of Toxicological Concern (TTC) in risk assessment. Toxicol Lett. 2008;180(2):151–6. https://doi.org/10.1016/j.toxlet.2008.05.006.
Article PubMed CAS Google Scholar
Tluczkiewicz I, Buist HE, Martin MT, Mangelsdorf I, Escher SE. Improvement of the Cramer classification for oral exposure using the database TTC RepDose–a strategy description. Regul Toxicol Pharmacol. 2011;61(3):340–50. https://doi.org/10.1016/j.yrtph.2011.09.005.
Article PubMed CAS Google Scholar
Graham JC, Powley MW, Udovic E, Glowienke S, Nicolette J, Parris P, et al. Calculating qualified non-mutagenic impurity levels: Harmonization of approaches. Regul Toxicol Pharmacol. 2021;126:105023. https://doi.org/10.1016/j.yrtph.2021.105023.
Internatioal Confeence on Harmonisation. (ICH) Q3A (R2) Impurities in new drug substances 2006;Step 4.
Kroes R, Renwick AG, Cheeseman M, Kleiner J, Mangelsdorf I, Piersma A, et al. Structure-based thresholds of toxicological concern (TTC): guidance for application to substances present at low levels in the diet. Food Chem Toxicol. 2004;42(1):65–83. https://doi.org/10.1016/j.fct.2003.08.006.
Article PubMed CAS Google Scholar
Harvey J, Fleetwood A, Ogilvie R, Teasdale A, Wilcox P, Spanhaak S. Management of organic impurities in small molecule medicinal products: Deriving safe limits for use in early development. Regul Toxicol Pharmacol. 2017;84:116–23. https://doi.org/10.1016/j.yrtph.2016.12.011.
Article PubMed CAS Google Scholar
Wu LC, Chen F, Lee SL, Raw A, Yu LX. Building parity between brand and generic peptide products: Regulatory and scientific considerations for quality of synthetic peptides. Int J Pharm. 2017;518(1):320–34. https://doi.org/10.1016/j.ijpharm.2016.12.051.
Article PubMed CAS Google Scholar
Bugelski PJ, Treacy G. Predictive power of preclinical studies in animals for the immunogenicity of recombinant therapeutic proteins in humans. Curr Opin Mol Ther. 2004;6(1):10–6.
Rozman KK. The role of time in toxicology or Haber’s c×t product. Toxicology. 2000;149(1):35–42. https://doi.org/10.1016/S0300-483X(00)00230-4.
Article PubMed CAS Google Scholar
Gaylor DW. The use of Haber’s Law in standard setting and risk assessment. Toxicology. 2000;149(1):17–9. https://doi.org/10.1016/S0300-483X(00)00228-6.
Article PubMed CAS Google Scholar
Capaldi D, Teasdale A, Henry S, Akhtar N, den Besten C, Gao-Sheridan S, et al. Impurities in Oligonucleotide Drug Substances and Drug Products. Nucleic Acid Ther. 2017;27(6):309–22. https://doi.org/10.1089/nat.2017.0691.
Article PubMed CAS Google Scholar
Roers A, Hiller B, Hornung V. Recognition of Endogenous Nucleic Acids by the Innate Immune System. Immunity. 2016;44(4):739–54. https://doi.org/10.1016/j.immuni.2016.04.002.
Article PubMed CAS Google Scholar
Meng Z, Lu M. RNA Interference-Induced Innate Immunity, Off-Target Effect, or Immune Adjuvant? Front Immunol. 2017;8:331. https://doi.org/10.3389/fimmu.2017.00331.
Article PubMed PubMed Central CAS Google Scholar
Bano N, Ehlinger C, Yang TY, Swanson M, Allen S. Considerations in the Immunogenicity Assessment Strategy for Oligonucleotide Therapeutics (ONTs). Aaps j. 2022;24(5):93. https://doi.org/10.1208/s12248-022-00741-x.
Article PubMed CAS Google Scholar
Yu RZ, Wang Y, Norris DA, Kim T-W, Narayanan P, Geary RS, et al. Immunogenicity Assessment of Inotersen, a 2′-O-(2-Methoxyethyl) Antisense Oligonucleotide in Animals and Humans: Effect on Pharmacokinetics, Pharmacodynamics, and Safety. Nucleic Acid Ther. 2020;30(5):265–75. https://doi.org/10.1089/nat.2020.0867.
Article PubMed CAS Google Scholar
Dintzis HM, Dintzis RZ, Vogelstein B. Molecular determinants of immunogenicity: the immunon model of immune response. Proc Natl Acad Sci U S A. 1976;73(10):3671–5. https://doi.org/10.1073/pnas.73.10.3671.
Article PubMed PubMed Central CAS Google Scholar
Rosenberg AS. Effects of protein aggregates: an immunologic perspective. Aaps j. 2006;8(3):E501–7. https://doi.org/10.1208/aapsj080359.
Article PubMed PubMed Central Google Scholar
Cohen JR, Brych SR, Prabhu S, Bi V, Elbaradei A, Tokuda JM, et al. A High Threshold of Biotherapeutic Aggregate Numbers is Needed to Induce an Immunogenic Response In Vitro, In Vivo, and in the Clinic. Pharm Res. 2024;41(4):651–72. https://doi.org/10.1007/s11095-024-03678-2.
Article PubMed CAS Google Scholar
Meunier S, De Bourayne M, Hamze M, Azam A, Correia E, Menier C. Maillère B specificity of the T Cell response to protein biopharmaceuticals. Front Immunol. 2020;11:1550.
Article PubMed PubMed Central CAS Google Scholar
Backert L, Kohlbacher O. Immunoinformatics and epitope prediction in the age of genomic medicine. Genome Medicine. 2015;7(1):119. https://doi.org/10.1186/s13073-015-0245-0.
Article PubMed PubMed Central CAS Google Scholar
Holley CK, Cedrone E, Donohue D, Neun BW, Verthelyi D, Pang ES, et al. An In Vitro Assessment of Immunostimulatory Responses to Ten Model Innate Immune Response Modulating Impurities (IIRMIs) and Peptide Drug Product, Teriparatide. Molecules. 2021;26(24):7461. https://doi.org/10.3390/molecules26247461.
Comments (0)