miR-214-3p inhibits LPS-induced macrophage inflammation and attenuates the progression of dry eye syndrome by regulating ferroptosis in cells

Buckley RJ (2018) Assessment and management of dry eye disease. Eye (Lond) 32:200–203

Article  PubMed  CAS  Google Scholar 

Chen X, Rao J, Zheng Z, Yu Y, Lou S, Liu L, He Q, Wu L, Sun X (2019) Integrated tear proteome and metabolome reveal panels of inflammatory-related molecules via key regulatory pathways in dry eye syndrome. J Proteome Res 18:2321–2330

Article  PubMed  CAS  Google Scholar 

Chen P, Wang D, Xiao T, Gu W, Yang H, Yang M, Wang H (2023) ACSL4 promotes ferroptosis and M1 macrophage polarization to regulate the tumorigenesis of nasopharyngeal carcinoma. Int Immunopharmacol 122:110629

Article  PubMed  CAS  Google Scholar 

Craig JP, Nichols KK, Akpek EK, Caffery B, Dua HS, Joo CK, Liu Z, Nelson JD, Nichols JJ, Tsubota K et al (2017) TFOS DEWS II definition and classification report. Ocul Surf 15:276–283

Article  PubMed  Google Scholar 

Dwivedi Y, Roy B, Lugli G, Rizavi H, Zhang H, Smalheiser NR (2015) Chronic corticosterone-mediated dysregulation of microRNA network in prefrontal cortex of rats: relevance to depression pathophysiology. Transl Psychiatry 5:e682

Article  PubMed  PubMed Central  CAS  Google Scholar 

Feng H, Schorpp K, Jin J, Yozwiak CE, Hoffstrom BG, Decker AM, Rajbhandari P, Stokes ME, Bender HG, Csuka JM et al (2020) Transferrin receptor is a specific ferroptosis marker. Cell Rep 30:3411–3423e3417

Article  PubMed  PubMed Central  CAS  Google Scholar 

Fillebeen C, Charlebois E, Wagner J, Katsarou A, Mui J, Vali H, Garcia-Santos D, Ponka P, Presley J, Pantopoulos K (2019) Transferrin receptor 1 controls systemic iron homeostasis by fine-tuning hepcidin expression to hepatocellular iron load. Blood 133:344–355

Article  PubMed  CAS  Google Scholar 

Fuhrmann DC, Mondorf A, Beifuß J, Jung M, Brüne B (2020) Hypoxia inhibits ferritinophagy, increases mitochondrial ferritin, and protects from ferroptosis. Redox Biol 36:101670

Article  PubMed  PubMed Central  CAS  Google Scholar 

Funes SC, Rios M, Escobar-Vera J, Kalergis AM (2018) Implications of macrophage polarization in autoimmunity. Immunology 154:186–195

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gu Z, Liu T, Liu C, Yang Y, Tang J, Song H, Wang Y, Yang Y, Yu C (2021) Ferroptosis-strengthened metabolic and inflammatory regulation of tumor-associated macrophages provokes potent tumoricidal activities. Nano Lett 21:6471–6479

Article  PubMed  CAS  Google Scholar 

Han R, Gao J, Wang L, Hao P, Chen X, Wang Y, Jiang Z, Jiang L, Wang T, Zhu L et al (2023) MicroRNA-146a negatively regulates inflammation via the IRAK1/TRAF6/NF-κB signaling pathway in dry eye. Sci Rep 13:11192

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hu L, Zhang T, Ma H, Pan Y, Wang S, Liu X, Dai X, Zheng Y, Lee LP, Liu F (2022) Discovering the secret of diseases by incorporated tear exosomes analysis via rapid-isolation system: iTEARS. ACS Nano 16:11720–11732

Article  PubMed  CAS  Google Scholar 

Huang X, Zhou D, Ye X, Jin J (2022) A novel ferroptosis-related gene signature can predict prognosis and influence immune microenvironment in acute myeloid leukemia. Bosn J Basic Med Sci 22:608–628

PubMed  CAS  Google Scholar 

Jeelani M (2024) miRNAs in epilepsy: a review from molecular signatures to therapeutic intervention. Int J Biol Macromol 263:130468

Article  PubMed  CAS  Google Scholar 

Lee HS, Amouzegar A, Dana R (2017) Kinetics of corneal antigen presenting cells in experimental dry eye disease. BMJ Open Ophthalmol 1:e000078

Article  PubMed  PubMed Central  Google Scholar 

Li X, Li L, Dong X, Ding J, Ma H, Han W (2021) Circ_GRN promotes the proliferation, migration, and inflammation of vascular smooth muscle cells in atherosclerosis through miR-214-3p/FOXO1 axis. J Cardiovasc Pharmacol 77:470–479

Article  PubMed  CAS  Google Scholar 

Liao CH, Tseng CL, Lin SL, Liang CL, Juo SH (2022) MicroRNA therapy for dry eye disease. J Ocul Pharmacol Ther 38:125–132

Article  PubMed  CAS  Google Scholar 

Lin L, Li K, Tian B, Jia M, Wang Q, Xu C, Xiong L, Wang QK, Zeng Y, Wang P (2022) Two novel functional mutations in promoter region of SCN3B gene associated with atrial fibrillation. Life (Basel) 12:1794

PubMed  CAS  Google Scholar 

Liu L, Guo H, Song A, Huang J, Zhang Y, Jin S, Li S, Zhang L, Yang C, Yang P (2020) Progranulin inhibits LPS-induced macrophage M1 polarization via NF-кB and MAPK pathways. BMC Immunol 21:32

Article  PubMed  PubMed Central  CAS  Google Scholar 

Mahesh G, Biswas R (2019) MicroRNA-155: a master regulator of inflammation. J Interferon Cytokine Res 39:321–330

Article  PubMed  PubMed Central  CAS  Google Scholar 

Meng YF, Pu Q, Dai SY, Ma Q, Li X, Zhu W (2021) Nicotinamide mononucleotide alleviates hyperosmolarity-induced IL-17a secretion and macrophage activation in corneal epithelial cells/macrophage co-culture system. J Inflamm Res 14:479–493

Article  PubMed  PubMed Central  Google Scholar 

Messmer EM (2015) The pathophysiology, diagnosis, and treatment of dry eye disease. Dtsch Arztebl Int 112:71–81 quiz 82

PubMed  PubMed Central  Google Scholar 

Nair AP, D’Souza S, Khamar P, Nuijts R, Sethu S, Shetty R (2023) Ocular surface immune cell diversity in dry eye disease. Indian J Ophthalmol 71:1237–1247

Article  PubMed  PubMed Central  Google Scholar 

Papas EB (2021) The global prevalence of dry eye disease: a bayesian view. Ophthalmic Physiol Opt 41:1254–1266

Article  PubMed  Google Scholar 

Peng LY, Li BB, Deng KB, Wang WG (2022) MicroRNA-214-3p facilitates M2 macrophage polarization by targeting GSK3B. Kaohsiung J Med Sci 38:347–356

Article  PubMed  CAS  Google Scholar 

Pucker AD, Ngo W, Postnikoff CK, Fortinberry H, Nichols JJ (2022) Tear film miRNAs and their association with human dry eye diseas. Curr Eye Res 47:1479–1487

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ren Y, Feng J, Lin Y, Reinach PS, Liu Y, Xia X, Ma X, Chen W, Zheng Q (2022) MiR-223 inhibits hyperosmolarity-induced inflammation through downregulating NLRP3 activation in human corneal epithelial cells and dry eye patients. Exp Eye Res 220:109096

Article  PubMed  CAS  Google Scholar 

Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, Seifi B, Mohammadi A, Afshari JT, Sahebkar A (2018) Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol 233:6425–6440

Article  PubMed  CAS  Google Scholar 

Shimazaki J (2018) Definition and diagnostic criteria of dry eye disease: historical overview and future directions. Invest Ophthalmol Vis Sci 59:Des7–des12

Article  PubMed  Google Scholar 

Sima C, Glogauer M (2013) Macrophage subsets and osteoimmunology: tuning of the immunological recognition and effector systems that maintain alveolar bone. Periodontol 2000 63:80–101

Şimşek C, Doğru M, Kojima T, Tsubota K (2018) Current management and treatment of dry eye disease. Turk J Ophthalmol 48:309–313

Article  PubMed  PubMed Central  Google Scholar 

Sindrilaru A, Peters T, Wieschalka S, Baican C, Baican A, Peter H, Hainzl A, Schatz S, Qi Y, Schlecht A et al (2011) An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. J Clin Invest 121:985–997

Comments (0)

No login
gif