Ağdamar S, Saç G, Acar Ü, Gaygusuz Ö, Doğaç E, Özuluğ M (2024) Population Genetic Structure of Petroleuciscus borysthenicus (Kessler 1859) in Northwestern Türkiye Using Mitochondrial COX1 Gene. J Appl Ichthyol 2024:6851143. https://doi.org/10.1155/2024/6851143
An JH, Yu JN, Kim BJ, Bae YS (2021) Genetic diversity and relationship of the genus Barbatula (Cypriniformes; Nemacheilidae) by mitochondrial DNA cytochrome b partial gene in Korea. Korean J Ichthyol 33:107–116
Arthington AH, Dulvy NK, Gladstone W, Winfield IJ (2016) Fish conservation in freshwater and marine realms: status, threats and management. Aquat Conserv: Mar Freshw Ecosyst 26:838–857. https://doi.org/10.1002/aqc.2712
Ashikaga FY, Orsi ML, Oliveira C, Senhorini JA, Foresti F (2015) The endangered species Brycon orbignyanus: genetic analysis and definition of priority areas for conservation. Environ Biol Fishes 98:1845–1855. https://doi.org/10.1007/s10641-015-0402-8
Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders NC (1987) Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Ann Rev Ecol Syst 18:489–522. https://doi.org/10.1146/annurev.es.18.110187.002421
Baek SY, Kang JH, Jo SH, Jang JE, Byeon SY, Wang JH, Wang JH, Lee HG, Choi JK, Lee HJ (2018) Contrasting life histories contribute to divergent patterns of genetic diversity and population connectivity in freshwater sculpin fishes. BMC Evol Biol 18:1–14. https://doi.org/10.1186/s12862-018-1171-8
Barasa JE, Abila R, Grobler JP, Agaba M, Chemoiwa EJ, Kaunda-Arara B (2016) High genetic diversity and population differentiation in Clarias gariepinus of Yala Swamp: evidence from mitochondrial DNA sequences. J Fish Biol 89:2557–2570. https://doi.org/10.1111/jfb.13150
Article PubMed CAS Google Scholar
Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu CH, Xie D, Suchard MA, Rambaut A, Drummond AJ (2014) BEAST 2: a software platform for bayesian evolutionary analysis. PLoS Comput Biol 10:e1003537. https://doi.org/10.1371/journal.pcbi.1003537
Article PubMed PubMed Central CAS Google Scholar
Brown WM, George MJr, Wilson AC (1979) Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci 76:1967–1971. https://doi.org/10.1073/pnas.76.4.1967
Article PubMed PubMed Central CAS Google Scholar
Byeon HK, Choi JS, Son YM, Choi JK (1995a) Taxonomic and morphological characteristics in the juvenile Cottus (Cottidae) fishes from Korea. Korean J Ichthyol 7:128–134
Byeon HK, Sim HS, Choi JS, Son YM, Choi JK, Jeon SR (1995b) Feeding habit of the river sculpin, Cottus poecilopus from the streams at Mt. Chiak, Korea. Korean J Ichthyol 7:160–170
Byeon HK, Kim KS, Song HY, Bang IC (2009) Morphological variations and genetic variations inferred from AFLP (amplified fragment length polymorphism) analysis of Cottus populations (Scorpaeniformes: Cottidae) in Korea. Korean J Ichthyol 21:67–75
Castro JA, Picornell A, Ramon M (1998) Mitochondrial DNA: a tool for populational genetics studies. Int Microbiol 1:327–332
Chae BS, Song HB, Park JY (2019) A field guide to the freshwater fishes of Korea. LG Evergreen Foundation, Seoul
Chen T, Chen X, Wang B, Nie J, You P (2020) Phylogeography of Gyrodactylus Konovalovi (Monogenoidea: Gyrodactylidae) in the Qinling Mountains in Central China. Zool Syst 45:243–258. https://doi.org/10.11865/zs.202031
Cho KS, Byeun HK, Kim JP (1993) Studies on ecological and early embryonic development of Cottus Poecilopterus at the stream of Mt. Chiak Korean J Limnol 26:27–35
Choi KC (1973) On the geographical distribution of freshwater fishes south of DMZ in Korea. Korean J Limnol 6:29–36
Chung MY, Son S, Suh GU, Herrando-Moraira S, Lee CH, López-Pujol J, Chung MG (2018) The Korean Baekdudaegan Mountains: a glacial refugium and a biodiversity hotspot that needs to be conserved. Front Genet 9:489. https://doi.org/10.3389/fgene.2018.00489
Article PubMed PubMed Central Google Scholar
Downhower JF, Lejeune P, Gaudin P, Brown L (1990) Movements of the chabot (Cottus gobio) in a small stream. Pol Arch Hydrobiol 37:119–126
Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. https://doi.org/10.1093/nar/gkh340
Article PubMed PubMed Central CAS Google Scholar
Eschbach E, Nolte AW, Kohlmann K, Alós J, Schöning S, Arlinghaus R (2021) Genetic population structure of a top predatory fish (northern pike, Esox lucius) covaries with anthropogenic alteration of freshwater ecosystems. Freshw Biol 66:884–901. https://doi.org/10.1111/fwb.13684
Ewing B, Green P (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8:186–194. https://doi.org/10.1101/gr.8.3.186
Article PubMed CAS Google Scholar
Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using Phred. I. Accuracy assessment. Genome Res 8:175–185. https://doi.org/10.1101/gr.8.3.175
Article PubMed CAS Google Scholar
Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x
Faulks LK, Gilligan DM, Beheregaray LB (2011) The role of anthropogenic vs. natural in-stream structures in determining connectivity and genetic diversity in an endangered freshwater fish, Macquarie perch (Macquaria australasica). Evol Appl 4:589–601. https://doi.org/10.1111/j.1752-4571.2011.00183.x
Article PubMed PubMed Central Google Scholar
Frankham R, Briscoe DA, Ballou JD (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge
Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925. https://doi.org/10.1093/genetics/147.2.915
Article PubMed PubMed Central CAS Google Scholar
Grant WS, Bowen BW (1998) Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. J Hered 89:415–426. https://doi.org/10.1093/jhered/89.5.415
Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877. https://doi.org/10.1101/gr.9.9.868
Article PubMed PubMed Central CAS Google Scholar
Hughes JM, Schmidt DJ, Finn DS (2009) Genes in streams: using DNA to understand the movement of freshwater fauna and their riverine habitat. Bioscience 59:573–583. https://doi.org/10.1525/bio.2009.59.7.8
Jeon SR (1998) Studies on the key and distributions of the Cottus poecilopus and C. hangiongensis (Cottidae) from Korea. J Basic Sci Sangmyung Univ 11:1–16
Jeon HB, Kim DY, Lee YJ, Bae HG, Suk HY (2018) The genetic structure of Squalidus multimaculatus revealing the historical pattern of serial colonization on the tip of east Asian continent. Sci Rep 8:10629. https://doi.org/10.1038/s41598-018-28340-x
Article PubMed PubMed Central CAS Google Scholar
Kang EJ, Bang IC, Yang H (2009) Strategies for conservation and restoration of freshwater fish species in Korea. Korean J Ichthyol 21:29–37
Kim IS (1997) Illustrated encyclopedia of fauna & flora of Korea. Freshwater fishes, vol 37. Ministry Education, Seoul
Kim IS, Park JY (2002) Freshwater fishes of Korea. Kyo-Hak Publishing Co., Ltd., Seoul
Kim IS, Choi Y, Lee CL, Lee YJ, Kim BJ, Kim JH (2005) Illustrated book of Korean fishes. Kyo-Hak Publishing, Seoul
Kim JH, Yoon JD, Song HB, Jang MH (2016) Home range and habitat use of translocated endangered species, Cottus koreanus, in South Korea. Anim Cells Syst 20:103–110. https://doi.org/10.1080/19768354.2016.1165286
Kim D, Hirt MV, Won YJ, Simons AM (2017) Small fishes crossed a large mountain range: quaternary stream capture events and freshwater fishes on both sides of the Taebaek Mountains. Integr Zool 12:292–302. https://doi.org/10.1111/1749-4877.12228
Kim DE, Seong YB, Weber J, Yu BY (2020) Unsteady migration of Taebaek Mountain drainage divide, cenozoic extensional basin margin, Korean Peninsula. Geomorphology 352:107012. https://doi.org/10.1016/j.geomorph.2019.107012
Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120. https://doi.org/10.1007/bf01731581
Comments (0)