Antigen-driven T cell responses in rheumatic diseases: insights from T cell receptor repertoire studies

Garrido-Mesa, J. & Brown, M. A. T cell repertoire profiling and the mechanism by which HLA-B27 causes ankylosing spondylitis. Curr. Rheumatol. Rep. 24, 398–410 (2022).

PubMed  PubMed Central  Google Scholar 

Oettinger, M. A., Schatz, D. G., Gorka, C. & Baltimore, D. RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science 248, 1517–1523 (1990).

PubMed  Google Scholar 

Bassing, C. H., Swat, W. & Alt, F. W. The mechanism and regulation of chromosomal V(D)J recombination. Cell 109, S45–S55 (2002).

PubMed  Google Scholar 

Turner, S. J., Doherty, P. C., McCluskey, J. & Rossjohn, J. Structural determinants of T-cell receptor bias in immunity. Nat. Rev. Immunol. 6, 883–894 (2006).

PubMed  Google Scholar 

Wooldridge, L. et al. A single autoimmune T cell receptor recognizes more than a million different peptides. J. Biol. Chem. 287, 1168–1177 (2012).

PubMed  Google Scholar 

Klein, L., Kyewski, B., Allen, P. M. & Hogquist, K. A. Positive and negative selection of the T cell repertoire: what thymocytes see (and don’t see). Nat. Rev. Immunol. 14, 377–391 (2014).

PubMed  PubMed Central  Google Scholar 

Warren, R. L. et al. Exhaustive T-cell repertoire sequencing of human peripheral blood samples reveals signatures of antigen selection and a directly measured repertoire size of at least 1 million clonotypes. Genome Res. 21, 790–797 (2011).

PubMed  PubMed Central  Google Scholar 

Li, H., Ye, C., Ji, G. & Han, J. Determinants of public T cell responses. Cell Res. 22, 33–42 (2012).

PubMed  PubMed Central  Google Scholar 

Gate, D. et al. Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer’s disease. Nature 577, 399–404 (2020).

PubMed  PubMed Central  Google Scholar 

Wardemann, H. & Busse, C. E. Novel approaches to analyze immunoglobulin repertoires. Trends Immunol. 38, 471–482 (2017).

PubMed  Google Scholar 

Woodsworth, D. J., Castellarin, M. & Holt, R. A. Sequence analysis of T-cell repertoires in health and disease. Genome Med. 5, 98 (2013).

PubMed  PubMed Central  Google Scholar 

Brown, S. D., Raeburn, L. A. & Holt, R. A. Profiling tissue-resident T cell repertoires by RNA sequencing. Genome Med. 7, 125 (2015).

PubMed  PubMed Central  Google Scholar 

Greiff, V., Miho, E., Menzel, U. & Reddy, S. T. Bioinformatic and statistical analysis of adaptive immune repertoires. Trends Immunol. 36, 738–749 (2015).

PubMed  Google Scholar 

Miho, E. et al. Computational strategies for dissecting the high-dimensional complexity of adaptive immune repertoires. Front. Immunol. 9, 224 (2018).

PubMed  PubMed Central  Google Scholar 

Henry, V. J., Bandrowski, A. E., Pepin, A. S., Gonzalez, B. J. & Desfeux, A. OMICtools: an informative directory for multi-omic data analysis. Database 2014, bau069 (2014).

PubMed  PubMed Central  Google Scholar 

Barwell, L. J., Isaac, N. J. & Kunin, W. E. Measuring β-diversity with species abundance data. J. Anim. Ecol. 84, 1112–1122 (2015).

PubMed  PubMed Central  Google Scholar 

Miles, J. J., Douek, D. C. & Price, D. A. Bias in the αβ T-cell repertoire: implications for disease pathogenesis and vaccination. Immunol. Cell Biol. 89, 375–387 (2011).

PubMed  Google Scholar 

Dash, P. et al. Quantifiable predictive features define epitope-specific T cell receptor repertoires. Nature 547, 89–93 (2017).

PubMed  PubMed Central  Google Scholar 

Glanville, J. et al. Identifying specificity groups in the T cell receptor repertoire. Nature 547, 94–98 (2017).

PubMed  PubMed Central  Google Scholar 

Ostmeyer, J., Christley, S., Toby, I. T. & Cowell, L. G. Biophysicochemical motifs in T-cell receptor sequences distinguish repertoires from tumor-infiltrating lymphocyte and adjacent healthy tissue. Cancer Res. 79, 1671–1680 (2019).

PubMed  PubMed Central  Google Scholar 

Davis, M. M. & Boyd, S. D. Recent progress in the analysis of αβT cell and B cell receptor repertoires. Curr. Opin. Immunol. 59, 109–114 (2019).

PubMed  PubMed Central  Google Scholar 

Kim, S. M. et al. Analysis of the paired TCR α- and β-chains of single human T cells. PLoS ONE 7, e37338 (2012).

PubMed  PubMed Central  Google Scholar 

Stubbington, M. J. T., Rozenblatt-Rosen, O., Regev, A. & Teichmann, S. A. Single-cell transcriptomics to explore the immune system in health and disease. Science 358, 58–63 (2017).

PubMed  PubMed Central  Google Scholar 

Proserpio, V. & Mahata, B. Single-cell technologies to study the immune system. Immunology 147, 133–140 (2016).

PubMed  Google Scholar 

Robinson, W. P. et al. HLA-Bw60 increases susceptibility to ankylosing spondylitis in HLA-B27+ patients. Arthritis Rheum. 32, 1135–1141 (1989).

PubMed  Google Scholar 

Brown, M. A. et al. HLA class I associations of ankylosing spondylitis in the white population in the United Kingdom. Ann. Rheum. Dis. 55, 268–270 (1996).

PubMed  PubMed Central  Google Scholar 

Chang, S. C., Momburg, F., Bhutani, N. & Goldberg, A. L. The ER aminopeptidase, ERAP1, trims precursors to lengths of MHC class I peptides by a “molecular ruler” mechanism. Proc. Natl Acad. Sci. USA 102, 17107–17112 (2005).

PubMed  PubMed Central  Google Scholar 

Evans, D. M. et al. Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility. Nat. Genet. 43, 761–767 (2011).

PubMed  PubMed Central  Google Scholar 

Cortes, A. et al. Major histocompatibility complex associations of ankylosing spondylitis are complex and involve further epistasis with ERAP1. Nat. Commun. 6, 7146 (2015).

PubMed  Google Scholar 

Colbert, R. A. The immunobiology of HLA-B27: variations on a theme. Curr. Mol. Med. 4, 21–30 (2004).

PubMed  Google Scholar 

Hermann, E., Yu, D. T., Meyer zum Buschenfelde, K. H. & Fleischer, B. HLA-B27-restricted CD8 T cells derived from synovial fluids of patients with reactive arthritis and ankylosing spondylitis. Lancet 342, 646–650 (1993).

PubMed  Google Scholar 

Duchmann, R. et al. HLA-B27-restricted cytotoxic T lymphocyte responses to arthritogenic enterobacteria or self-antigens are dominated by closely related TCRBV gene segments. A study in patients with reactive arthritis. Scand. J. Immunol. 43, 101–108 (1996).

PubMed  Google Scholar 

Dulphy, N. et al. Common intra-articular T cell expansions in patients with reactive arthritis: identical beta-chain junctional sequences and cytotoxicity toward HLA-B27. J. Immunol. 162, 3830–3839 (1999). First report of the AS-associated TRBV9-J2S3 CDR3 motif.

PubMed  Google Scholar 

May, E. et al. Conserved TCR β chain usage in reactive arthritis; evidence for selection by a putative HLA-B27-associated autoantigen. Tissue Antigens 60, 299–308 (2002).

PubMed  Google Scholar 

Faham, M. et al. Discovery of T cell receptor β motifs specific to HLA-B27-positive ankylosing spondylitis by deep repertoire sequence analysis. Arthritis Rheumatol. 69, 774–784 (2017). Largest TCR profiling study in AS using NGS-based methods, HLA-B27 typing and controls including patients with non-AS rheumatic disease.

PubMed  Google Scholar 

Komech, E. A. et al. CD8+ T cells with characteristic T cell receptor beta motif are detected in blood and expanded in synovial fluid of ankylosing spondylitis patients. Rheumatology 57, 1097–1104 (2018).

PubMed  Google Scholar 

Zheng, M. et al. TCR repertoire and CDR3 motif analyses depict the role of αβ T cells in ankylosing spondylitis. EBioMedicine 47, 414–426 (2019).

PubMed  PubMed Central  Google Scholar 

Hanson et al. T-cell receptor immunosequencing reveals altered repertoire diversity and disease-associated clonal expansions in ankylosing spondylitis patients. Arthritis Rheumatol. 72, 1289–1302 (2020). This study provides a comprehensive description of TCR repertoire alterations in AS, including both CD8 and CD4 T cell clonotype associations, showing that this is not just a feature of HLA-B27 carriage but rather of HLA-B27-associated axSpA.

PubMed  Google Scholar 

Komech, E. A. et al. TCR repertoire profiling revealed antigen-driven CD8+ T cell clonal groups shared in synovial fluid of patients with spondyloarthritis. Front. Immunol. 13, 973243 (2022). This study reports TCR associations with HLA-B38+PsA and HLA-B27+SpA, including the first report of AS-associated expansions among patients with PsA.

PubMed  PubMed Central  Google Scholar 

Gracey, E. et al. IL-7 primes IL-17 in mucosal-associated invariant T (MAIT) cells, which contribute to the Th17-axis in ankylosing spondylitis. Ann. Rheum. Dis. 75, 2124–2132 (2016).

PubMed  Google Scholar 

Yang, X. et al. Autoimmunity-associated T cell receptors recognize HLA-B*27-bound peptides. Nature 612, 771–777 (2022). This breakthrough study identifies the paired TCRαβ sequences of AS-associated TRBV9 clonotypes in AS and acute anterior uveitis and performs a yeast display peptide screening to identify potential antigenic peptides and their protein sources.

PubMed  PubMed Central  Google Scholar 

Deschler, K. et al. Antigen-specific immune reactions by expanded CD8+ T cell clones from HLA-B*27-positive patients with spondyloarthritis. J. Autoimmun. 133, 102901 (2022).

P

Comments (0)

No login
gif