Lehn, J. M. Supramolecular chemistry—scope and perspectives molecules, supermolecules, and molecular devices (Nobel lecture). Angew. Chem. Int. Ed. 27, 89–112 (1988).
Chen, H. & Stoddart, J. F. From molecular to supramolecular electronics. Nat. Rev. Mat. 6, 804–828 (2021).
Bayer, O. Das di-isocyanat-polyadditionsverfahren (Polyurethane). Angew. Chem. 59, 257–272 (1947).
Li, S. et al. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat. Biotechnol. 36, 258–264 (2018).
Wessendorf, F., Grimm, B., Guldi, D. M. & Hirsch, A. Pairing fullerenes and porphyrins: supramolecular wires that exhibit charge transfer activity. J. Am. Chem. Soc. 132, 10786–10795 (2010).
Gust, D. Supramolecular photochemistry applied to artificial photosynthesis and molecular logic devices. Faraday Discuss. 185, 9–35 (2015).
Würthner, F. et al. Supramolecular p–n-heterojunctions by co-self-organization of oligo(p-phenylene vinylene) and perylene bisimide dyes. J. Am. Chem. Soc. 126, 10611–10618 (2004).
Yamauchi, A. et al. Room-temperature quantum coherence of entangled multiexcitons in a metal–organic framework. Sci. Adv. 10, eadi3147 (2024).
Article PubMed PubMed Central Google Scholar
Yamabayashi, T. et al. Scaling up electronic spin qubits into a three-dimensional metal–organic framework. J. Am. Chem. Soc. 140, 12090–12101 (2018).
Fernandez, A. et al. Making hybrid [n]-rotaxanes as supramolecular arrays of molecular electron spin qubits. Nat. Commun. 7, 10240 (2016).
Article PubMed PubMed Central Google Scholar
Gorgon, S. et al. Reversible spin-optical interface in luminescent organic radicals. Nature 620, 538–544 (2023).
Article PubMed PubMed Central Google Scholar
Qiu, Y. et al. Optical spin polarization of a narrow linewidth electron spin qubit in a chromophore/stable-radical system. Angew. Chem. Int. Ed. 62, e202214668 (2023).
Qiu, Y., Eckvahl, H. J., Equbal, A., Krzyaniak, M. D. & Wasielewski, M. R. Enhancing coherence times of chromophore–radical molecular qubits and qudits by rational design. J. Am. Chem. Soc. 145, 25903–25909 (2023).
Mayländer, M., Chen, S., Lorenzo, E. R., Wasielewski, M. R. & Richert, S. Exploring photogenerated molecular quartet states as spin qubits and qudits. J. Am. Chem. Soc. 143, 7050–7058 (2021).
Mayländer, M., Thielert, P., Quintes, T., Vargas Jentzsch, A. & Richert, S. Room temperature electron spin coherence in photogenerated molecular spin qubit candidates. J. Am. Chem. Soc. 145, 14064–14069 (2023).
Mayländer, M. et al. Distance dependence of enhanced intersystem crossing in BODIPY−nitroxide dyads. Chem. Sci. 14, 5361–5368 (2023).
Article PubMed PubMed Central Google Scholar
Mayländer, M. et al. PDI–trityl dyads as photogenerated molecular spin qubit candidates. Chem. Sci. 14, 10727–10735 (2023).
Article PubMed PubMed Central Google Scholar
Moreno-Pineda, E., Godfrin, C., Balestro, F., Wernsdorfer, W. & Ruben, M. Molecular spin qudits for quantum algorithms. Chem. Soc. Rev. 47, 501–513 (2018).
Moreno-Pineda, E., Martins, D. & Tuna, F. Molecules as qubits, qudits and quantum gates. Electron Paramag. Reson. 27, 146–187 (2021).
Franz, M., Neese, F. & Richert, S. Calculation of exchange couplings in the electronically excited state of molecular three-spin systems. Chem. Sci. 13, 12358–12366 (2022).
Article PubMed PubMed Central Google Scholar
David, G. & Le Guennic, B. Computation of magnetic exchange couplings in photoexcited systems based on KS-DFT. J. Phys. Chem. Lett. 15, 10026–10031 (2024).
Franz, M., Neese, F. & Richert, S. Elucidation of the exchange interaction in photoexcited three-spin systems—a second-order perturbational approach. Phys. Chem. Chem. Phys. 26, 25005–25020 (2024).
Quintes, T., Mayländer, M. & Richert, S. Properties and applications of photoexcited chromophore–radical systems. Nat. Rev. Chem. 7, 75–90 (2023).
Fouquey, C., Lehn, J. M. & Levelut, A. Molecular recognition directed self-assembly of supramolecular liquid crystalline polymers from complementary chiral components. Adv. Mater. 2, 254–257 (1990).
Kimizuka, N., Kawasaki, T., Hirata, K. & Kunitake, T. Tube-like nanostructures composed of networks of complementary hydrogen bonds. J. Am. Chem. Soc. 117, 6360–6361 (1995).
Lange, R. F. M. et al. Crystal engineering of melamine–imide complexes; tuning the stoichiometry by steric hindrance of the imide carbonyl groups. Angew. Chem. Int. Ed. 36, 969–971 (1997).
Jolliffe, K. A., Timmerman, P. & Reinhoudt, D. N. Noncovalent assembly of a fifteen-component hydrogen-bonded nanostructure. Angew. Chem. Int. Ed. 38, 933–937 (1999).
Würthner, F. et al. Hierarchical self-organization of perylene bisimide–melamine assemblies to fluorescent mesoscopic superstructures. Chem. Eur. J. 6, 3871–3886 (2000).
Würthner, F., Thalacker, C. & Sautter, A. Hierarchical organization of functional perylene chromophores to mesoscopic superstructures by hydrogen bonding and π–π interactions. Adv. Mater. 11, 754–758 (1999).
Schenning, A. P. H. J. et al. Photoinduced electron transfer in hydrogen-bonded oligo(p-phenylene vinylene)–perylene bisimide chiral assemblies. J. Am. Chem. Soc. 124, 10252–10253 (2002).
Kálai, T., Jekő, J., Berente, Z. & Hideg, K. Palladium-catalyzed cross-coupling reactions of paramagnetic vinyl bromides and paramagnetic boronic acids. Synthesis 38, 439–446 (2006).
Mayländer, M. et al. Accessing the triplet state of perylenediimide by radical-enhanced intersystem crossing. Chem. Sci. 13, 6732–6743 (2022).
Article PubMed PubMed Central Google Scholar
Online tools for supramolecular chemistry research and analysis. http://supramolecular.org (2015).
Thordarson, P. Determining association constants from titration experiments in supramolecular chemistry. Chem. Soc. Rev. 40, 1305–1323 (2011).
Astashkin, A. V. & Schweiger, A. Electron-spin transient nutation: a new approach to simplify the interpretation of ESR spectra. Chem. Phys. Lett. 174, 595–602 (1990).
Mizuochi, N., Ohba, Y. & Yamauchi, S. A two-dimensional EPR nutation study on excited multiplet states of fullerene linked to a nitroxide radical. J. Phys. Chem. A 101, 5966–5968 (1997).
Mizuochi, N., Ohba, Y. & Yamauchi, S. First observation of the photoexcited quintet state in fullerene linked with two nitroxide radicals. J. Phys. Chem. A 103, 7749–7752 (1999).
Lockyer, S. J. et al. Targeting molecular quantum memory with embedded error correction. Chem. Sci. 12, 9104–9113 (2021).
Article PubMed PubMed Central Google Scholar
Wasielewski, M. R. et al. Exploiting chemistry and molecular systems for quantum information science. Nat. Rev. Chem. 4, 490–504 (2020).
Comments (0)