Supramolecular dyads as photogenerated qubit candidates

Lehn, J. M. Supramolecular chemistry—scope and perspectives molecules, supermolecules, and molecular devices (Nobel lecture). Angew. Chem. Int. Ed. 27, 89–112 (1988).

Article  Google Scholar 

Chen, H. & Stoddart, J. F. From molecular to supramolecular electronics. Nat. Rev. Mat. 6, 804–828 (2021).

Article  Google Scholar 

Bayer, O. Das di-isocyanat-polyadditionsverfahren (Polyurethane). Angew. Chem. 59, 257–272 (1947).

Article  Google Scholar 

Li, S. et al. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat. Biotechnol. 36, 258–264 (2018).

Article  PubMed  Google Scholar 

Wessendorf, F., Grimm, B., Guldi, D. M. & Hirsch, A. Pairing fullerenes and porphyrins: supramolecular wires that exhibit charge transfer activity. J. Am. Chem. Soc. 132, 10786–10795 (2010).

Article  PubMed  Google Scholar 

Gust, D. Supramolecular photochemistry applied to artificial photosynthesis and molecular logic devices. Faraday Discuss. 185, 9–35 (2015).

Article  PubMed  Google Scholar 

Würthner, F. et al. Supramolecular p–n-heterojunctions by co-self-organization of oligo(p-phenylene vinylene) and perylene bisimide dyes. J. Am. Chem. Soc. 126, 10611–10618 (2004).

Article  PubMed  Google Scholar 

Yamauchi, A. et al. Room-temperature quantum coherence of entangled multiexcitons in a metal–organic framework. Sci. Adv. 10, eadi3147 (2024).

Article  PubMed  PubMed Central  Google Scholar 

Yamabayashi, T. et al. Scaling up electronic spin qubits into a three-dimensional metal–organic framework. J. Am. Chem. Soc. 140, 12090–12101 (2018).

Article  PubMed  Google Scholar 

Fernandez, A. et al. Making hybrid [n]-rotaxanes as supramolecular arrays of molecular electron spin qubits. Nat. Commun. 7, 10240 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Gorgon, S. et al. Reversible spin-optical interface in luminescent organic radicals. Nature 620, 538–544 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Qiu, Y. et al. Optical spin polarization of a narrow linewidth electron spin qubit in a chromophore/stable-radical system. Angew. Chem. Int. Ed. 62, e202214668 (2023).

Article  Google Scholar 

Qiu, Y., Eckvahl, H. J., Equbal, A., Krzyaniak, M. D. & Wasielewski, M. R. Enhancing coherence times of chromophore–radical molecular qubits and qudits by rational design. J. Am. Chem. Soc. 145, 25903–25909 (2023).

Article  PubMed  Google Scholar 

Mayländer, M., Chen, S., Lorenzo, E. R., Wasielewski, M. R. & Richert, S. Exploring photogenerated molecular quartet states as spin qubits and qudits. J. Am. Chem. Soc. 143, 7050–7058 (2021).

Article  PubMed  Google Scholar 

Mayländer, M., Thielert, P., Quintes, T., Vargas Jentzsch, A. & Richert, S. Room temperature electron spin coherence in photogenerated molecular spin qubit candidates. J. Am. Chem. Soc. 145, 14064–14069 (2023).

Article  PubMed  Google Scholar 

Mayländer, M. et al. Distance dependence of enhanced intersystem crossing in BODIPY−nitroxide dyads. Chem. Sci. 14, 5361–5368 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Mayländer, M. et al. PDI–trityl dyads as photogenerated molecular spin qubit candidates. Chem. Sci. 14, 10727–10735 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Moreno-Pineda, E., Godfrin, C., Balestro, F., Wernsdorfer, W. & Ruben, M. Molecular spin qudits for quantum algorithms. Chem. Soc. Rev. 47, 501–513 (2018).

Article  PubMed  Google Scholar 

Moreno-Pineda, E., Martins, D. & Tuna, F. Molecules as qubits, qudits and quantum gates. Electron Paramag. Reson. 27, 146–187 (2021).

Article  Google Scholar 

Franz, M., Neese, F. & Richert, S. Calculation of exchange couplings in the electronically excited state of molecular three-spin systems. Chem. Sci. 13, 12358–12366 (2022).

Article  PubMed  PubMed Central  Google Scholar 

David, G. & Le Guennic, B. Computation of magnetic exchange couplings in photoexcited systems based on KS-DFT. J. Phys. Chem. Lett. 15, 10026–10031 (2024).

Article  PubMed  Google Scholar 

Franz, M., Neese, F. & Richert, S. Elucidation of the exchange interaction in photoexcited three-spin systems—a second-order perturbational approach. Phys. Chem. Chem. Phys. 26, 25005–25020 (2024).

Article  PubMed  Google Scholar 

Quintes, T., Mayländer, M. & Richert, S. Properties and applications of photoexcited chromophore–radical systems. Nat. Rev. Chem. 7, 75–90 (2023).

Article  PubMed  Google Scholar 

Fouquey, C., Lehn, J. M. & Levelut, A. Molecular recognition directed self-assembly of supramolecular liquid crystalline polymers from complementary chiral components. Adv. Mater. 2, 254–257 (1990).

Article  Google Scholar 

Kimizuka, N., Kawasaki, T., Hirata, K. & Kunitake, T. Tube-like nanostructures composed of networks of complementary hydrogen bonds. J. Am. Chem. Soc. 117, 6360–6361 (1995).

Article  Google Scholar 

Lange, R. F. M. et al. Crystal engineering of melamine–imide complexes; tuning the stoichiometry by steric hindrance of the imide carbonyl groups. Angew. Chem. Int. Ed. 36, 969–971 (1997).

Article  Google Scholar 

Jolliffe, K. A., Timmerman, P. & Reinhoudt, D. N. Noncovalent assembly of a fifteen-component hydrogen-bonded nanostructure. Angew. Chem. Int. Ed. 38, 933–937 (1999).

Article  Google Scholar 

Würthner, F. et al. Hierarchical self-organization of perylene bisimide–melamine assemblies to fluorescent mesoscopic superstructures. Chem. Eur. J. 6, 3871–3886 (2000).

Article  PubMed  Google Scholar 

Würthner, F., Thalacker, C. & Sautter, A. Hierarchical organization of functional perylene chromophores to mesoscopic superstructures by hydrogen bonding and π–π interactions. Adv. Mater. 11, 754–758 (1999).

Article  Google Scholar 

Schenning, A. P. H. J. et al. Photoinduced electron transfer in hydrogen-bonded oligo(p-phenylene vinylene)–perylene bisimide chiral assemblies. J. Am. Chem. Soc. 124, 10252–10253 (2002).

Article  PubMed  Google Scholar 

Kálai, T., Jekő, J., Berente, Z. & Hideg, K. Palladium-catalyzed cross-coupling reactions of paramagnetic vinyl bromides and paramagnetic boronic acids. Synthesis 38, 439–446 (2006).

Google Scholar 

Mayländer, M. et al. Accessing the triplet state of perylenediimide by radical-enhanced intersystem crossing. Chem. Sci. 13, 6732–6743 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Online tools for supramolecular chemistry research and analysis. http://supramolecular.org (2015).

Thordarson, P. Determining association constants from titration experiments in supramolecular chemistry. Chem. Soc. Rev. 40, 1305–1323 (2011).

Article  PubMed  Google Scholar 

Astashkin, A. V. & Schweiger, A. Electron-spin transient nutation: a new approach to simplify the interpretation of ESR spectra. Chem. Phys. Lett. 174, 595–602 (1990).

Article  Google Scholar 

Mizuochi, N., Ohba, Y. & Yamauchi, S. A two-dimensional EPR nutation study on excited multiplet states of fullerene linked to a nitroxide radical. J. Phys. Chem. A 101, 5966–5968 (1997).

Article  Google Scholar 

Mizuochi, N., Ohba, Y. & Yamauchi, S. First observation of the photoexcited quintet state in fullerene linked with two nitroxide radicals. J. Phys. Chem. A 103, 7749–7752 (1999).

Article  Google Scholar 

Lockyer, S. J. et al. Targeting molecular quantum memory with embedded error correction. Chem. Sci. 12, 9104–9113 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Wasielewski, M. R. et al. Exploiting chemistry and molecular systems for quantum information science. Nat. Rev. Chem. 4, 490–504 (2020).

Article  PubMed  Google Scholar 

Comments (0)

No login
gif